Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Processed tubes prevent the risk of thrombosis

22.03.2011
If blood vessels are narrowed by deposits in the veins, a blockage of the veins may be caused. A thrombosis forms, which can lead to a cardiac infarction.

Small artificial tubes in the veins, so-called stents, dilate the veins and allow the blood to circulate again without hindrance.


Plasma chamber
Copyright: Bellhäuser

But after a while, the deposit of cells and blood components starts at these tubes, as well, and thus the blood vessel narrows again. In an international joint project, scientists from Saarbrücken are now investigating the feasibility, how to change the surface of these tubes so that no unwanted components may no longer be deposited there.

Under the auspices of INM — Leibniz Institute for New Materials, scientists are working on coating processes that smooth the tube walls and make them well tolerated for the human body. The kick-off meeting of the joint project Nano4stent took place at INM at the beginning of January, bringing together the joint partners of INM, the Saarland University Hospital Homburg, the Kocaeli University/Turkey, and the Korean University of Technology and Education/Korea. The joint project Nano4stent is funded by the EU in the framework of the international cooperation network KORANET.

The scientific experts at INM use a special method in their research work: In the same way as water drops from vapor are formed uniformly on the cold lid of a pot, the researchers form the coating on the surface of the tube. "It is our aim to cover the surface of the tubes with a completely even protection layer", says Cenk Aktas, head of the program division "CVD/Biosurfaces". For this purpose, small cavities will be applied synthetically on the surface by using laser treatment. After each cavity and the whole surface of the tubes is perfectly coated, the unwanted components will no longer have a chance to react with the surface of the tube and to adhere there.

INM is focused on the research and development of materials – for today, tomorrow and the future. Chemists, physicists, biologists, materials and engineering scientists shape the work at INM. From molecule to pilot production, they follow the recurring question: Which material properties are new, how can they be investigated and how can they be used in the future?

The INM — Leibniz Institute for New Materials, situated in Saarbrücken/Germany, is an internationally visible center for materials research. It cooperates scientifically with national and international institutes and develops for companies throughout the world. INM is an institute of the Scientific Association Gottfried Wilhelm Leibniz and employs around 190 collaborators. Its main research fields are chemical nanotechnology, interface materials and materials in biology.

Contact:

Dr. Cenk Aktas
INM — Leibniz Institute for New Materials
Phone: +49 681 9300 140
E-mail: cenk.aktas@inm-gmbh.de

Dr. Carola Jung | idw
Further information:
http://www.inm-gmbh.de

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>