Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Prenatal exposure to phthalates linked to decreased mental and motor development

These endocrine-disrupting chemicals, which are widely present in the environment, linked to increased behavioral problems at age 3 and may cause changes in the developing brain

A newly published study by researchers at Columbia University's Mailman School of Public Health heightens concerns over the potential health effects on children of a group of ubiquitous chemicals known as phthalates. Phthalates are a class of chemicals that are known to disrupt the endocrine system, and are widely used in consumer products ranging from plastic toys, to household building materials, to shampoos.

Recent studies of school-age children have provided preliminary links between prenatal exposure to phthalates and developmental problems. The study is the first to examine prenatal phthalate exposure and the prevalence of mental, motor and behavioral problems in children who are in the preschool years. The paper, published online today in Environmental Health Perspectives, adds to rising concerns about the risks associated with exposures to phthalates during pregnancy.

The study followed the children of 319 non-smoking inner-city women who gave birth between 1999 and 2006. Researchers, led by Robin M. Whyatt, DrPH, deputy director of the Columbia Center for Children's Environmental Health, measured metabolites of four phthalates in maternal urine as markers of prenatal exposure. The phthalates were: di-2-ethylhexyl phthalate, di-isobutyl phthalate, di-n-butyl phthalate and butylbenzyl phthalate. The study evaluated associations between prenatal exposures to these phthalates and child mental, motor and behavioral development at age 3 years.

The scientists used the Bayley Scales of Infant Development II, a well validated developmental test, to assess the mental and motor development of the children. Behavioral problems were measured by asking mothers to complete the widely used 99-item Child Behavior Checklist (for ages 1½-5 years). Overall, researchers found that higher prenatal exposures to two of the phthalates significantly increased the odds of motor delay, an indication of potential future problems with fine and gross motor coordination. Among girls, one of the phthalates was associated with significant decreases in mental development. Prenatal exposures to three of the phthalates were also significantly associated with behavior problems including emotionally reactive behavior, anxiety/depression, somatic complaints and withdrawn behavior. These effects differed somewhat by child sex but were statistically significant among both boys and girls.

"Our results suggest that prenatal exposure to these phthalates adversely affects child mental, motor and behavioral development during the preschool years," said Dr. Whyatt, who is also professor of clinical Environmental Health Sciences. "The results add to a growing public health concern about the widespread use of phthalates in consumer products."

The actual mechanisms by which phthalates may affect the developing brain are still being explored. Dr. Whyatt points out that phthalates are endocrine disrupters—substances that affect hormone systems in the body. Evidence suggests that they impact the function of the thyroid gland. They also lower production of testosterone, which plays a critical role in the developing brain. "More work is needed to understand the biological effects of these commonplace substances," noted Dr. Whyatt.

"The results are concerning since increasing exposures from the lowest 25% to the highest 25% among the women in our study was associated with a doubling or tripling in the odds of motor and/or behavioral problems in the children," explained Pam Factor-Litvak, PhD, the senior epidemiologist on the study. "However, the number of children with clinical disorders was small," stated Dr. Factor-Litvak. The authors point out that the phthalate exposures among the women in the study varied widely reflecting the range of exposures found in the U.S. population.

The study was conducted in collaboration with Dr. Antonia Calafat from the Centers for Disease Control and Prevention, who measured the phthalate metabolites in the maternal prenatal urine. Other members of the Columbia research team included Dr. Xinhua Liu, Dr. Virginia A. Rauh, Allan C. Just, Lori Hoepner, Diurka Diaz, James Quinn, Dr. Jennifer Adibi, and Dr. Frederica P. Perera.

The work was supported by a grant from the National Institute of Environmental Health Sciences.

About Columbia University's Mailman School of Public Health

Founded in 1922 as one of the first three public health academies in the nation, Columbia University's Mailman School of Public Health pursues an agenda of research, education, and service to address the critical and complex public health issues affecting New Yorkers, the nation and the world. The Mailman School is the third largest recipient of NIH grants among schools of public health. Its over 300 multi-disciplinary faculty members work in more than 100 countries around the world, addressing such issues as preventing infectious and chronic diseases, environmental health, maternal and child health, health policy, climate change & health, and public health preparedness. It is a leader in public health education with over 1,000 graduate students from more than 40 nations pursuing a variety of master's and doctoral degree programs. The Mailman School is also home to numerous world-renowned research centers including the International Center for AIDS Care and Treatment Programs (ICAP), the National Center for Disaster Preparedness, and the Center for Infection and Immunity. For more information, please visit

About the Columbia Center for Children's Environmental Health

The Columbia Center for Children's Environmental Health (The Center) conducts community-based research in the United States and overseas to study the health effects of prenatal and early postnatal exposures to common urban pollutants, with the aim of preventing environmentally related conditions in children. We apply the results of our research to interventions that reduce exposure to toxic pollutants; a community education campaign to increase environmental health awareness among local residents, parents, health professionals and educators; and to informing public interest groups, elected officials, and other policymakers who can shape policies to improve the environmental health status of low-income communities. The Center's overall mission is to improve prevention, clinical treatment, and engage community members to work effectively with each other and with elected officials to improve their neighborhood's environmental health.

Stephanie Berger | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>