Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


More power for brain simulations

Understanding the brain with supercomputers – this is the goal of the new Simulation Laboratory Neuroscience at the Research Center Jülich that was founded by the Helmholtz Association.

Within the new institution, the “Bernstein Facility Simulation and Database Technology” will be established that is integrated into the National Bernstein Network Computational Neuroscience, funded by the Federal Ministry for Education and Research (BMBF). Providing advisory support to the network’s scientists, the new facility will be optimally integrated into the field of Computational Neuroscience in Germany.

Computer simulations and theoretical models are increasingly important tools for understanding the complex processes of our brain. The Simulation Laboratory supports neuroscientists from all over Europe in the optimal use of the Jülich supercomputers. It will also spur the development of theoretical models and standardisation in the field of brain research.

The most powerful computer in the world sits in our head. About 100 billion nerve cells interact in the brain. The rules by which the cells and brain areas communicate with each other and how they are altered by neurological diseases are increasingly being investigated in simulations. But the more realistic the simulations are, the more computationally intensive they are, too. In addition, neuroscientific methods that produce very large amount of data in a very short time are gaining in importance. Such high-throughput methods require new approaches to data processing. Therefore, the researchers at Europe’s largest computing center in Jülich will also develop methods that enable the analysis of ever larger data sets of neuroscience.

To fully exploit the performance of the Jülich supercomputer such as JUGENE, it is necessary to adapt the simulations of brain processes to their specific needs and opportunities. “Today's supercomputers consist of hundreds of thousands of cores. To efficiently distribute a simulation via these processors, we need completely new data structures and communication algorithms as compared to those that we used for smaller systems,” explains Markus Diesmann, Professor for Computational Neuroscience at the Research Center Jülich.

With the support of experts in computational neuroscience, data analysis, anatomy, virtual reality and supercomputing, neuroscientists have the possibility to adapt and optimise their programs. By improved standardisation of the model description, the researchers hope to achieve both better comparability as well as a simplified combination of different sub-models.

By integrating the “Bernstein Facility Simulation and Database Technology” into the National Bernstein Network Computational Neuroscience, the facility is from the outset well connected to the German neuroscience research landscape. The Bernstein Network connects more than 200 research groups. Here, large amounts of relevant neurobiological data are collected and complex models and simulations are used. The latter rely on the long term availability and development of simulation-software andsome of them are only processable at the Jülich supercomputers. The cooperation with the Bernstein Network is an excellent example of how long-term institutional funding of the Helmholtz Association and BMBF project funding can complement each other towards a common goal: understanding the brain.

For further information please contact:
Prof. Dr. Markus Diesmann
Institute of Neuroscience and Medicine (INM-6)
Computational and Systems Neuroscience
Research Center Jülich
52425 Jülich
Tel: +49 2461 61-9301

Johannes Faber | idw
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>