Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potential new drug target for depression identified

29.04.2009
Disrupting an acid-sensitive protein in the brain produces antidepressant effects

An acid-sensitive protein in the brain may represent a new target for the treatment of depression, according to animal research in the April 29 issue of The Journal of Neuroscience.

The study shows that disrupting acid-sensitive ion channel-1a (ASIC1a) produces antidepressant-like effects in mice. The findings may one day benefit people who do not respond to traditional antidepressants or who cannot tolerate their side effects.

"Depression is one of the most devastating and difficult-to-treat disorders known to man," said John F. Cryan, PhD, at University College Cork in Ireland, who was not affiliated with the study. "Despite much research, all antidepressant medications that are currently prescribed work in much the same way and are of limited efficacy in more than a third of all patients. The development of antidepressants that act on other molecular targets in the brain would be a major breakthrough," Cryan said.

Although animal models cannot reproduce all of the symptoms of human depression, several behavioral tests in rodents are sensitive to antidepressant treatment, suggesting that they address important aspects of the disease. For example, chronically stressed mice lose their normal preference for sugary drinks, and mice repeatedly placed in a pool of water tend to give up and float rather than swim in the hopes of escaping.

These mouse behaviors are thought to reflect loss of interest in pleasurable activities and hopelessness or despair. But traditional antidepressants are able to restore the mouse preference for sweet treats and reduce the amount of time that they float rather than swim.

The researchers, led by Matthew Coryell, PhD and senior researcher John Wemmie, MD, PhD, at the University of Iowa, found that mice lacking the ASIC1a gene and normal mice treated with drugs that inhibit ASIC1a showed reduced depression-like behaviors. These mice showed increased sweet taste preference and reduced immobility, consistent with antidepressant treatment.

Mice lacking the ASIC1a gene also failed to show a known biomarker for depression. Chronic stress normally decreases the amount of the BDNF gene in the brain, but mice lacking ASIC1a failed to show this change.

The researchers found that ASIC1a-based treatment works through a different biological pathway than traditional antidepressants, suggesting that it may benefit people who do not respond to traditional therapies.

ASIC1a is located in brain structures associated with mood, including the amygdala, which is critical for so-called negative emotions such as anger, anxiety, and fear. The researchers previously showed reduced amygdala activity in animals that lacked the ASIC1a gene. In the current study, they reversed the antidepressant effect of ASIC1a gene deletion by turning the ASIC1a gene back on only in the amygdala. These findings support the idea that depression could be caused, at least in part, by hyperactivity of the amygdala.

"ASIC1a inhibitors may combat depression by reducing amygdala activity. Because of the importance of the amygdala in negative emotions and fear, we speculate that ASIC1a inhibition increases the brain's resistance to the negative effects of stress, perhaps reducing the likelihood of developing depression," said study author Wemmie.

The research was supported by the National Institute of Mental Health, the National Alliance for Research on Schizophrenia and Depression, and the Department of Veteran Affairs.

The Journal of Neuroscience is published by the Society for Neuroscience, an organization of more than 38,000 basic scientists and clinicians who study the brain and nervous system. Wemmie can be reached at john-wemmie@uiowa.edu.

Todd Bentsen | EurekAlert!
Further information:
http://www.sfn.org

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>