Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potential new drug target for depression identified

29.04.2009
Disrupting an acid-sensitive protein in the brain produces antidepressant effects

An acid-sensitive protein in the brain may represent a new target for the treatment of depression, according to animal research in the April 29 issue of The Journal of Neuroscience.

The study shows that disrupting acid-sensitive ion channel-1a (ASIC1a) produces antidepressant-like effects in mice. The findings may one day benefit people who do not respond to traditional antidepressants or who cannot tolerate their side effects.

"Depression is one of the most devastating and difficult-to-treat disorders known to man," said John F. Cryan, PhD, at University College Cork in Ireland, who was not affiliated with the study. "Despite much research, all antidepressant medications that are currently prescribed work in much the same way and are of limited efficacy in more than a third of all patients. The development of antidepressants that act on other molecular targets in the brain would be a major breakthrough," Cryan said.

Although animal models cannot reproduce all of the symptoms of human depression, several behavioral tests in rodents are sensitive to antidepressant treatment, suggesting that they address important aspects of the disease. For example, chronically stressed mice lose their normal preference for sugary drinks, and mice repeatedly placed in a pool of water tend to give up and float rather than swim in the hopes of escaping.

These mouse behaviors are thought to reflect loss of interest in pleasurable activities and hopelessness or despair. But traditional antidepressants are able to restore the mouse preference for sweet treats and reduce the amount of time that they float rather than swim.

The researchers, led by Matthew Coryell, PhD and senior researcher John Wemmie, MD, PhD, at the University of Iowa, found that mice lacking the ASIC1a gene and normal mice treated with drugs that inhibit ASIC1a showed reduced depression-like behaviors. These mice showed increased sweet taste preference and reduced immobility, consistent with antidepressant treatment.

Mice lacking the ASIC1a gene also failed to show a known biomarker for depression. Chronic stress normally decreases the amount of the BDNF gene in the brain, but mice lacking ASIC1a failed to show this change.

The researchers found that ASIC1a-based treatment works through a different biological pathway than traditional antidepressants, suggesting that it may benefit people who do not respond to traditional therapies.

ASIC1a is located in brain structures associated with mood, including the amygdala, which is critical for so-called negative emotions such as anger, anxiety, and fear. The researchers previously showed reduced amygdala activity in animals that lacked the ASIC1a gene. In the current study, they reversed the antidepressant effect of ASIC1a gene deletion by turning the ASIC1a gene back on only in the amygdala. These findings support the idea that depression could be caused, at least in part, by hyperactivity of the amygdala.

"ASIC1a inhibitors may combat depression by reducing amygdala activity. Because of the importance of the amygdala in negative emotions and fear, we speculate that ASIC1a inhibition increases the brain's resistance to the negative effects of stress, perhaps reducing the likelihood of developing depression," said study author Wemmie.

The research was supported by the National Institute of Mental Health, the National Alliance for Research on Schizophrenia and Depression, and the Department of Veteran Affairs.

The Journal of Neuroscience is published by the Society for Neuroscience, an organization of more than 38,000 basic scientists and clinicians who study the brain and nervous system. Wemmie can be reached at john-wemmie@uiowa.edu.

Todd Bentsen | EurekAlert!
Further information:
http://www.sfn.org

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>