Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Popular whole-body-vibration exercise: not an effective therapy for the prevention of bone loss

15.11.2011
Whole-body-vibration, a popular exercise which uses a vibrating platform, is sometimes advertised as being able to boost bone density. However, a one-year-study on healthy postmenopausal women has shown that it has no such effect.

The study entitled, "Effects of 12 Months of Whole-Body Vibration (WBV) on Bone Density and Structure in Postmenopausal Women: A Randomized Controlled Trial", is published in the November 15, 2011 issue of the Annals of Internal Medicine. This study was led by University Health Network (UHN) researchers, Drs. Angela Cheung, Shabbir Alibhai and Luba Slatkovska (lead author), who conducted this as part of her doctoral thesis.

"Although researchers are seeking alternatives to time-consuming exercise to improve bone density, the results of this study suggest this specific therapy is not effective in improving bone density," said Dr. Angela Cheung, Director of the Osteoporosis Program at UHN, Director of the Centre of Excellence in Skeletal Health Assessment (CESHA), Lillian Love Chair in Women's Health, and Associate Professor, University of Toronto. "Women would be farther ahead in making sure that they are exercising regularly and eating nutritious foods."

About one in two women after the age of 50 will have a fracture in their lifetime that is related to osteoporosis. Osteoporosis is a condition that causes bones to become brittle and porous, decreasing bone strength and density, thereby increasing the risk of fracture or breakage. The most common sites of osteoporotic fracture are the wrist, spine and hip.

WBV involves standing on a motor-driven, oscillating small platform, like a bathroom scale, which produces upward accelerations from the feet to the weight-bearing muscles and bones, reproducing pressure on the bones, much like weight-bearing exercises are designed to do. With very little effort, participants can simply stand on these moving platforms to allegedly achieve the benefits of more labourious and intense exercises.

Participants in the study were 202 healthy postmenopausal women, with a mean age of 60, who were not on any prescription bone medications. They were randomized into three separate arms of the clinical trial which included low magnitude (which mimics muscle contractions in activities such as walking) at either 30Hz or 90 Hz oscillations. They were asked to stand on the platform for 20 minutes daily at home for 12 months.

The control group was asked not to use WBV therapies. All women were provided calcium and vitamin D supplements at baseline and six months, so that their daily intakes approximated 1200 mg and 1000 IU, respectively.

At baseline and 12 months, bone structure and bone density were measured at the hip, and lumbar spine, using dual-energy X-ray absorptiometry, and at the forearm and lower leg using high-resolution peripheral quantitative computed tomography (CT scan), the most advanced imaging technology for measuring bone structure and density.

Twelve months of low-magnitude WBV at 90 and 30 Hz did not result in any significant changes in either bone density or bone structure in the participants as measured at the hip or lumbar spine, or lower leg or forearm, compared to those participants who did not do WBV.

The study concludes that low-magnitude WBV is not an effective therapy for the prevention of bone loss in postmenopausal women.

Instead, Dr. Cheung recommends that for women without osteoporosis, adequate calcium and vitamin D through diet and supplements, as well as weight-bearing exercises such as walking, dancing, or exercising with small weights, are better strategies for maintaining strong bones.

For more information about the Osteoporosis Program at University Health Network, please visit www.uhn.ca/osteoporosis, which includes information about the Osteoporosis Exercise Guide, demonstrating and explaining the most beneficial exercises in building bone strength and guidelines in preventing injuries and fractures.

A peer-reviewed grant from the Ontario Physicians' Services Incorporated Foundation funded the study. Juvent Inc. supplied the WBV platforms, and Jamieson Laboratories provided calcium and vitamin D. None of these sources were involved in the study design, analysis or interpretation of data, or preparation of the manuscript.

About University Health Network

University Health Network consists of Toronto General, Toronto Western and Princess Margaret Hospitals, and Toronto Rehabilitation Institute. The scope of research and complexity of cases at University Health Network has made it a national and international source for discovery, education and patient care. It has the largest hospital-based research program in Canada, with major research in complex care, cardiology, transplantation, neurosciences, oncology, surgical innovation, infectious diseases, genomic medicine and rehabilitation medicine. University Health Network is a research hospital affiliated with the University of Toronto. www.uhn.ca

Alex Radkewycz | EurekAlert!
Further information:
http://www.uhn.ca

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>