Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Popular whole-body-vibration exercise: not an effective therapy for the prevention of bone loss

15.11.2011
Whole-body-vibration, a popular exercise which uses a vibrating platform, is sometimes advertised as being able to boost bone density. However, a one-year-study on healthy postmenopausal women has shown that it has no such effect.

The study entitled, "Effects of 12 Months of Whole-Body Vibration (WBV) on Bone Density and Structure in Postmenopausal Women: A Randomized Controlled Trial", is published in the November 15, 2011 issue of the Annals of Internal Medicine. This study was led by University Health Network (UHN) researchers, Drs. Angela Cheung, Shabbir Alibhai and Luba Slatkovska (lead author), who conducted this as part of her doctoral thesis.

"Although researchers are seeking alternatives to time-consuming exercise to improve bone density, the results of this study suggest this specific therapy is not effective in improving bone density," said Dr. Angela Cheung, Director of the Osteoporosis Program at UHN, Director of the Centre of Excellence in Skeletal Health Assessment (CESHA), Lillian Love Chair in Women's Health, and Associate Professor, University of Toronto. "Women would be farther ahead in making sure that they are exercising regularly and eating nutritious foods."

About one in two women after the age of 50 will have a fracture in their lifetime that is related to osteoporosis. Osteoporosis is a condition that causes bones to become brittle and porous, decreasing bone strength and density, thereby increasing the risk of fracture or breakage. The most common sites of osteoporotic fracture are the wrist, spine and hip.

WBV involves standing on a motor-driven, oscillating small platform, like a bathroom scale, which produces upward accelerations from the feet to the weight-bearing muscles and bones, reproducing pressure on the bones, much like weight-bearing exercises are designed to do. With very little effort, participants can simply stand on these moving platforms to allegedly achieve the benefits of more labourious and intense exercises.

Participants in the study were 202 healthy postmenopausal women, with a mean age of 60, who were not on any prescription bone medications. They were randomized into three separate arms of the clinical trial which included low magnitude (which mimics muscle contractions in activities such as walking) at either 30Hz or 90 Hz oscillations. They were asked to stand on the platform for 20 minutes daily at home for 12 months.

The control group was asked not to use WBV therapies. All women were provided calcium and vitamin D supplements at baseline and six months, so that their daily intakes approximated 1200 mg and 1000 IU, respectively.

At baseline and 12 months, bone structure and bone density were measured at the hip, and lumbar spine, using dual-energy X-ray absorptiometry, and at the forearm and lower leg using high-resolution peripheral quantitative computed tomography (CT scan), the most advanced imaging technology for measuring bone structure and density.

Twelve months of low-magnitude WBV at 90 and 30 Hz did not result in any significant changes in either bone density or bone structure in the participants as measured at the hip or lumbar spine, or lower leg or forearm, compared to those participants who did not do WBV.

The study concludes that low-magnitude WBV is not an effective therapy for the prevention of bone loss in postmenopausal women.

Instead, Dr. Cheung recommends that for women without osteoporosis, adequate calcium and vitamin D through diet and supplements, as well as weight-bearing exercises such as walking, dancing, or exercising with small weights, are better strategies for maintaining strong bones.

For more information about the Osteoporosis Program at University Health Network, please visit www.uhn.ca/osteoporosis, which includes information about the Osteoporosis Exercise Guide, demonstrating and explaining the most beneficial exercises in building bone strength and guidelines in preventing injuries and fractures.

A peer-reviewed grant from the Ontario Physicians' Services Incorporated Foundation funded the study. Juvent Inc. supplied the WBV platforms, and Jamieson Laboratories provided calcium and vitamin D. None of these sources were involved in the study design, analysis or interpretation of data, or preparation of the manuscript.

About University Health Network

University Health Network consists of Toronto General, Toronto Western and Princess Margaret Hospitals, and Toronto Rehabilitation Institute. The scope of research and complexity of cases at University Health Network has made it a national and international source for discovery, education and patient care. It has the largest hospital-based research program in Canada, with major research in complex care, cardiology, transplantation, neurosciences, oncology, surgical innovation, infectious diseases, genomic medicine and rehabilitation medicine. University Health Network is a research hospital affiliated with the University of Toronto. www.uhn.ca

Alex Radkewycz | EurekAlert!
Further information:
http://www.uhn.ca

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>