Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Popular Alzheimer's theory may be false trail

17.06.2009
The idea that anti-inflammatory drugs might protect people struggling with dementia from Alzheimer's disease has received a blow with the online release of a study of human brain tissue in Acta Neuropathologica.

Researchers with the McKnight Brain Institute of the University of Florida, in collaboration with scientists at the University of Frankfurt, Germany, discovered that inflammation of microglia -- an abundant cell type that plays an important supporting role in the brain -- does not appear to be associated with dementia in Alzheimer's disease.

The finding supports recent clinical trial results that indicate anti-inflammatory drugs are not effective at fighting dementia in patients with Alzheimer's disease, which affects about 5.3 million Americans.

"For almost 20 years now, it's been claimed that brain inflammation contributes to the development of Alzheimer's disease dementia, and based on that claim, numerous clinical trials with anti-inflammatory drugs have been conducted. They have been unsuccessful," said Wolfgang Streit, a professor of neuroscience at the College of Medicine. "In the current paper we have shown that the brain's immune system, made up of microglia, is not activated in the brains of Alzheimer's patients, as would be the case if there were inflammation. Instead, microglia are degenerating. We claim that a loss of microglial cells contributes to the loss of neurons, and thus to the development of dementia."

Microglial cells are a subset of a very large population of brain cells known as glial cells. Neurons are the workhorse cells of the brain, enabling thought and movement, but glia are their faithful sidekicks, providing physical and nutritional support.

Glial cells, which outnumber neurons 10-to-1, are at the heart of a popular explanation for Alzheimer's disease that suggests protein fragments called beta amyloid -- Abeta for short -- clump together in the spaces between brain cells, causing memory loss and dementia. Inflammation theories suggest that microglia become "activated" and mount an immune response to these protein clumps, and instead of being helpful, a toxic release of chemicals occurs, worsening the disease effects.

However, Streit's high-resolution observations did not find evidence that Abeta activates, or inflames, human microglia cells. Nor did researchers find evidence that inflammation is to blame for brain cell death.

"This paper potentially represents a paradigm shift in the way we look at Alzheimer's disease," said Mark A. Smith, a professor of pathology at Case Western Reserve University and editor-in-chief of the Journal of Alzheimer's Disease. "The study goes against the very popular idea of neuro-inflammation; instead, the idea that microglia are senescent is consistent with a number of features of the disease.

"The research makes a very good case that these cells are subject to aging," said Smith, who did not participate in the study. "These cells were thought to be activated (against Alzheimer's), but this paper makes a strong case that they are not. The study has taken a novel approach that has led to a novel insight."

Using a commercially available antibody, Streit for the first time created a marker for microglial cells in human brain specimens that had been in chemical storage. The specimens were from 19 people with varying degrees of Alzheimer's, ranging from severe to none at all. Two of the samples were from Down syndrome patients, who are known to develop Alzheimer's pathology in middle age.

When researchers examined these cells alongside neurons under a high-resolution microscope, they found that -- unless an infection had occurred elsewhere in the body -- microglial cells from Alzheimer's patients were not distinctly larger or unusually shaped, which would have been the case had they been inflamed.

"What I expected to see is activated microglia right next to dying neurons," Streit said. "That is what I did not find. What I propose is glia are dying, and the neurons lose support. We now need to find out what caused glia to degenerate. Rather than trying to find ways to inhibit microglia with anti-inflammatory drugs, we need to find ways to keep them alive and strong. It's a whole new field."

The microglial cells had a tangled, fragmented appearance, similar to neurons in the throes of Alzheimer's disease or -- old age.

"These cells are breaking into pieces," said Streit, who collaborated with Alzheimer's researcher Dr. Heiko Braak, of the Institute for Clinical Neuroanatomy in Frankfurt. "They are on their way out. For the first time, we are proving that microglial cells are subject to aging and may undergo degeneration, and that the loss of these cells precedes the loss of neurons. Research has been so focused on finding activated microglia, no one considered that these cells were degenerating and neurons lost support."

The work was supported by the National Institutes of Health, the German Research Council and the Evelyn F. and William L. McKnight Brain Institute.

Alzheimer's disease is the sixth leading cause of death in the United States and the fifth leading cause of death for Americans 65 and older, according to the Alzheimer's Association. The association estimates Alzheimer's and other dementias cost Medicare, Medicaid and businesses a total of $148 billion annually.

April Frawley Birdwell | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>