Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pesticide exposure found to increase risk of Parkinson's disease

22.04.2009
Study finds exposure may have occurred years before symptoms appear
The fertile soil of California's Central Valley has long made it famous as one of the nation's prime crop-growing regions. But it's not just the soil that allows for such productivity. Crops like potatoes, dry beans and tomatoes have long been protected from bugs and weeds by the fungicide maneb and the herbicide paraquat.

Scientists know that in animal models and cell cultures, such pesticides trigger a neurodegenerative process that leads to Parkinson's disease. Now, researchers at UCLA provide the first evidence for a similar process in humans.

In a new epidemiological study of Central Valley residents who have been diagnosed with Parkinson's disease, researchers found that years of exposure to the combination of these two pesticides increased the risk of Parkinson's by 75 percent. Further, for people 60 years old or younger diagnosed with Parkinson's, earlier exposure had increased their risk for the disease by as much as four- to six-fold.

Reporting in the April 15 issue of the American Journal of Epidemiology, Beate Ritz, professor of epidemiology at the UCLA School of Public Health, and Sadie Costello, a former doctoral student at UCLA who is now at the University of California, Berkeley, found that Central Valley residents who lived within 500 meters of fields sprayed between 1974 and 1999 had a 75-percent increased risk for Parkinson's.

In addition, people who were diagnosed with Parkinson's at age 60 or younger were found to have been at much higher risk because they had been exposed to maneb, paraquat or both in combination between 1974 and 1989, years when they would have been children, teens or young adults.

The researchers enrolled 368 longtime residents diagnosed with Parkinson's and 341 others as a control group.

Parkinson's disease is a degenerative disorder of the central nervous system that often impairs motor skills, speech and other functions. It has been reported to occur at high rates among farmers and in rural populations, contributing to the hypothesis that agricultural pesticides may be partially responsible.

Until now, however, data on human exposure has been unavailable, largely because it has been too hard to measure an individual's environmental exposure to any specific pesticide.

"Because pesticides applied from the air or ground may drift from their intended treatment sites — with measurable concentrations subsequently detected in the air, in plants and in animals up to several hundred meters from application sites — accurate methods of estimating environmental exposures in rural communities have long been sorely needed," said Ritz, the study's senior author and vice chair of the School of Public Health's epidemiology department.

So Ritz, Costello and colleague Myles Cockburn from the University of Southern California, developed a geographic information system–based tool that estimated human exposure to pesticides applied to agricultural crops. This GIS tool combined land-use maps and pesticide-use reporting data from the state of California. Each pesticide-use record includes the name of the pesticide's active ingredient, the amount applied, the crop, the acreage of the field, the application method and the date of application.

Research subjects were recruited between 1998 to 2007; telephone interviews were conducted to obtain their demographic and exposure information. Detailed residential history forms were mailed to subjects in advance of their interviews and were reviewed in person or over the phone. The researchers recorded and added lifetime residential histories and estimated ambient exposures into the system for all historical addresses at which participants had resided between 1974 and 1999, the period covered by the pesticide-use data.

"The results confirmed two previous observations from animal studies," Ritz said. "One, that exposure to multiple chemicals may increase the effect of each chemical. That's important, since humans are often exposed to more than one pesticide in the environment. And second, that the timing of exposure is also important."

Ritz noted that this is the first epidemiological study to provide strong evidence that maneb and paraquat act synergistically to become neurotoxic and strongly increase the risk of Parkinson's disease in humans.

Of particular concern, Ritz said, and consistent with other theories regarding the progression of Parkinson's pathology, is that the data "suggests that the critical window of exposure to toxicants may have occurred years before the onset of motor symptoms when a diagnosis of Parkinson's is made."

In addition to Ritz and first author Costello, study authors included Jeff Bronstein, UCLA professor of neurology, and Xinbo Zhang of USC. The authors declare no conflicts of interest.

The research was supported by the National Institute of Environmental Health Science, the National Institute of Neurological Disorders and Stroke, and the Department of Defense Prostate Cancer Research Program. In addition, initial pilot funding was provided by the American Parkinson Disease Association.

The UCLA School of Public Health is dedicated to enhancing the public's health by conducting innovative research, training future leaders and health professionals, translating research into policy and practice, and serving local, national and international communities.

Mark Wheeler | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Health and Medicine:

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

nachricht Disrupted fat breakdown in the brain makes mice dumb
19.05.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Supercomputing helps researchers understand Earth's interior

23.05.2017 | Earth Sciences

Study identifies RNA molecule that shields breast cancer stem cells from immune system

23.05.2017 | Life Sciences

Turmoil in sluggish electrons’ existence

23.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>