Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pesticide exposure found to increase risk of Parkinson's disease

22.04.2009
Study finds exposure may have occurred years before symptoms appear
The fertile soil of California's Central Valley has long made it famous as one of the nation's prime crop-growing regions. But it's not just the soil that allows for such productivity. Crops like potatoes, dry beans and tomatoes have long been protected from bugs and weeds by the fungicide maneb and the herbicide paraquat.

Scientists know that in animal models and cell cultures, such pesticides trigger a neurodegenerative process that leads to Parkinson's disease. Now, researchers at UCLA provide the first evidence for a similar process in humans.

In a new epidemiological study of Central Valley residents who have been diagnosed with Parkinson's disease, researchers found that years of exposure to the combination of these two pesticides increased the risk of Parkinson's by 75 percent. Further, for people 60 years old or younger diagnosed with Parkinson's, earlier exposure had increased their risk for the disease by as much as four- to six-fold.

Reporting in the April 15 issue of the American Journal of Epidemiology, Beate Ritz, professor of epidemiology at the UCLA School of Public Health, and Sadie Costello, a former doctoral student at UCLA who is now at the University of California, Berkeley, found that Central Valley residents who lived within 500 meters of fields sprayed between 1974 and 1999 had a 75-percent increased risk for Parkinson's.

In addition, people who were diagnosed with Parkinson's at age 60 or younger were found to have been at much higher risk because they had been exposed to maneb, paraquat or both in combination between 1974 and 1989, years when they would have been children, teens or young adults.

The researchers enrolled 368 longtime residents diagnosed with Parkinson's and 341 others as a control group.

Parkinson's disease is a degenerative disorder of the central nervous system that often impairs motor skills, speech and other functions. It has been reported to occur at high rates among farmers and in rural populations, contributing to the hypothesis that agricultural pesticides may be partially responsible.

Until now, however, data on human exposure has been unavailable, largely because it has been too hard to measure an individual's environmental exposure to any specific pesticide.

"Because pesticides applied from the air or ground may drift from their intended treatment sites — with measurable concentrations subsequently detected in the air, in plants and in animals up to several hundred meters from application sites — accurate methods of estimating environmental exposures in rural communities have long been sorely needed," said Ritz, the study's senior author and vice chair of the School of Public Health's epidemiology department.

So Ritz, Costello and colleague Myles Cockburn from the University of Southern California, developed a geographic information system–based tool that estimated human exposure to pesticides applied to agricultural crops. This GIS tool combined land-use maps and pesticide-use reporting data from the state of California. Each pesticide-use record includes the name of the pesticide's active ingredient, the amount applied, the crop, the acreage of the field, the application method and the date of application.

Research subjects were recruited between 1998 to 2007; telephone interviews were conducted to obtain their demographic and exposure information. Detailed residential history forms were mailed to subjects in advance of their interviews and were reviewed in person or over the phone. The researchers recorded and added lifetime residential histories and estimated ambient exposures into the system for all historical addresses at which participants had resided between 1974 and 1999, the period covered by the pesticide-use data.

"The results confirmed two previous observations from animal studies," Ritz said. "One, that exposure to multiple chemicals may increase the effect of each chemical. That's important, since humans are often exposed to more than one pesticide in the environment. And second, that the timing of exposure is also important."

Ritz noted that this is the first epidemiological study to provide strong evidence that maneb and paraquat act synergistically to become neurotoxic and strongly increase the risk of Parkinson's disease in humans.

Of particular concern, Ritz said, and consistent with other theories regarding the progression of Parkinson's pathology, is that the data "suggests that the critical window of exposure to toxicants may have occurred years before the onset of motor symptoms when a diagnosis of Parkinson's is made."

In addition to Ritz and first author Costello, study authors included Jeff Bronstein, UCLA professor of neurology, and Xinbo Zhang of USC. The authors declare no conflicts of interest.

The research was supported by the National Institute of Environmental Health Science, the National Institute of Neurological Disorders and Stroke, and the Department of Defense Prostate Cancer Research Program. In addition, initial pilot funding was provided by the American Parkinson Disease Association.

The UCLA School of Public Health is dedicated to enhancing the public's health by conducting innovative research, training future leaders and health professionals, translating research into policy and practice, and serving local, national and international communities.

Mark Wheeler | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Scientists discover species of dolphin that existed along South Carolina coast

24.08.2017 | Life Sciences

The science of fluoride flipping

24.08.2017 | Life Sciences

Optimizing therapy planning for cancers of the liver

24.08.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>