Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pediatric vaccine stockpile policies need to be revisited, researcher says

10.09.2010
Vaccine manufacturers and public health decision-makers need to collaborate in a more efficient and effective manner not only to reduce the likelihood of supply shortages for pediatric vaccines but also to maximize community immunity by using vaccine doses to increase coverage, according to research published by a University of Illinois researcher who specializes in statistics and data analysis.

Sheldon H. Jacobson, a professor of computer science and the director of the simulation and optimization laboratory at Illinois, says that the Pediatric Vaccine Stockpile Program administered by the Centers for Disease Control and Prevention should not simply be seen as a repository of vaccines, but rather as a "repository of opportunities" for enhancing the collective immunity of children.

"We hear a lot about bioterrorism and pandemics, but the fact of the matter is, the threat to routine immunization is one of the greatest threats we face," Jacobson said. "If we had problems with our vaccine supply chain, it would have the potential to cause more deaths than any of those other issues."

With an average of 11,000 children in need of immunization on any given day, Jacobson says that managing pediatric vaccine stockpiles shouldn't simply be limited to increasing the levels of the stockpile itself.

"Just like perishable goods, vaccines have a shelf life," Jacobson said. "They're not like canned goods that you can simply stockpile and forget about for an extended period of time.

"When you have finite economic resources, you have to make choices. But we also want to create a buffer that will create the widest possible public health safety net."

The CDC's current policy of maintaining a six-month rotating vaccine stockpile isn't the most optimal solution for achieving "herd immunity," which Jacobson defines as "the smallest percentage of a population that must be immunized against a disease so that unvaccinated individuals are also protected."

Jacobson, who published his research in the Journal of Industrial and Management Optimization, considered the relative mortality and morbidity of diseases to determine what levels stockpiles should be set at to minimize the risk of shortage and maximize coverage opportunities while minimizing costs.

"We took all of these factors into account and created a multi-attribute model using utility theory to solve for appropriate levels."

Jacobson said that when actual vaccine shortages have occurred over the last 10 years, the duration of the shortages were between 16 and 18 months.

"Even though we're preparing for six months out, we never see six months," he said. "The shortest time period in the last 10 years has been a 7-month period. That's a byproduct of one-size-fits-all policy for stockpiles. Although it's easy and simple to do, it's not the most efficient policy. We need to re-engineer the objectives of our pediatric vaccine stockpiles and establish more flexible policies for maximizing their utility."

Jacobson's research proposes a stochastic model to determine the stockpile levels that minimize the risk of a vaccine shortage during a supply interruption while also maintaining a given coverage rate.

"For some vaccines, you need very little stockpiles; for others, you need much larger ones," he said.

Pertussis, or whooping cough, as it's more commonly known, can be a "very deadly, virulent disease if it spreads, while mumps, on the other hand, rarely causes death," Jacobson said.

"When we're talking about vaccines, equal is not effective. The recent pertussis outbreaks in California and Ohio highlight the needs for differentiated stockpile levels, meaning we have to look at the characteristics of the diseases in terms of achieving herd immunity as well as how deadly the disease is."

Jacobson, who also is a professor of pediatrics at the College of Medicine on the Urbana campus, said that although routine immunization is the most effective public health strategy to prevent the occurrence and spread of infectious diseases, there's always going to be a certain small percentage of the population who will not be immunized, because of religious beliefs or allergies to the vaccine.

"The CDC's goal for immunization is 95 percent compliance," he said. "They don't expect 100 percent. But if you get to 95 percent, you're typically going to have a herd immunity."

Ultimately, vaccination is a critical public health issue that can't be run by the vagaries of emotion.

"If we allow our emotions to guide our policies, we'll pay the price somewhere down the line. The public health system saves rather than costs our nation money. And any way that we can reduce mortality and morbidity through immunization would be beneficial to the health-care system both in cost and value and to the nation as a whole."

Co-authors of the study were Dr. Janet A. Jokela, the head of medicine and of the internal medicine residency program for the U. of I. College of Medicine at Urbana-Champaign; and Ruben A. Proano, a professor of industrial and systems engineering at the Rochester Institute of Technology.

The National Science Foundation funded the project.

Phil Ciciora | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>