Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Most patients recover from 'chemo-brain' by 5 years after stem cell transplant

04.05.2011
However, fine-motor and memory deficits persist for some after 5 years

Many patients who undergo bone marrow or blood stem cell transplantation to treat blood cancers or a "pre-leukemic" condition called myelodysplasia experience a decline in mental and fine motor skills due to the toll of their disease and its treatment.

A new study led by researchers at Fred Hutchinson Cancer Research Center, published in the May 2, 2011 online edition of the Journal of Clinical Oncology, found that overall, these effects are largely temporary and that most patients can expect a return to normal motor and memory function within five years. However, the study also found that deficits in fine motor skills and verbal memory remained for a significant percentage of patients and warrant more attention by health care providers.

It has been widely documented that powerful chemotherapy drugs that leukemia and lymphoma patients receive prior to hematopoietic transplantation (HCT) – as well as medicines to combat graft-versus-host disease – can impact motor and memory skills. The purpose of the new study, led by Karen Syrjala, Ph.D., director of Biobehavioral Sciences at the Hutchinson Center, was to determine whether patients recover from these neurocognitive deficits within five years of transplant.

For the study, Syrjala and colleagues identified 92 patients who had received an allogeneic (cells from a donor other than themselves) bone marrow or stem cell transplant for chronic myeloid leukemia, acute leukemia, lymphoma or myelodysplastic syndrome, an umbrella term for several "pre-cancerous" diseases in which the bone marrow does not function normally.

For comparison purposes, the patients were asked to nominate a case-matched control, such as a sibling or friend of the same gender and similar age who had neither received a transplant nor were in active cancer treatment. The transplant patients and control subjects were then given a battery of tests – all by the same test giver – to assess their memory and motor skills.

The tests included immediate and delayed recall of a list of words, saying out loud as many words as possible that begin with specific letters, the ability to sequentially link letters and numbers on paper, learning to match numbers and symbols and write the symbols on paper to match random numbers, and putting toothpick-sized pegs into holes as fast as possible.

Analysis of the tests results showed that most patients made substantial improvements in neurocognitive function over the five years after their transplant. "However, contrary to expectations, neither motor dexterity nor verbal learning and retention improved between one and five years," the authors wrote. "Deficits were most notable in motor speed and dexterity."

Described as mostly mild, the neurocognitive dysfunctions remained at five years for twice as many long-term survivors (41.5 percent) versus controls (19.7 percent).

Syrjala said the researchers were surprised by the evidence of continued impairment.

"We really thought the rates would be lower," Syrjala said. "We were thrilled to see that people recovered substantially, but we also were surprised that so many people did continue to have measurable deficits in some areas even after five years."

Syrjala said the reasons for persistent deficits are unknown and more research is needed to examine the causes. One theory is that some cancers, especially leukemia and lymphoma, are "whole-body" cancers because blood circulates throughout the body and these diseases may cause their own neurocognitive impacts, in addition to what chemotherapy may contribute.

"The major clinical implication of this research is to assure HCT recipients and their health care providers that further progress will occur in their information processing capacity between one and five years after treatment," the authors wrote. "However, it is equally important to validate for long-term survivors that not all HCT recipients fully recover neurocognitive function by five years. These results provide further indication of the need for cognitive rehabilitation strategies after one year for those residual deficits."

The investigation is the first to prospectively follow the same group of patients for five years for any cancer, according to the authors. The study builds upon previous findings by Syrjala and colleagues, published in 2004, which followed the same group of patients to one year after transplant. That study also found that neurocognitive impacts of transplantation are largely temporary.

Co-authors on the paper included researchers from the University of Washington School of Medicine and School of Social Work and Arizona Medical Psychology. Grants from the National Cancer Institute funded the research.

At Fred Hutchinson Cancer Research Center, our interdisciplinary teams of world-renowned scientists and humanitarians work together to prevent, diagnose and treat cancer, HIV/AIDS and other diseases. Our researchers, including three Nobel laureates, bring a relentless pursuit and passion for health, knowledge and hope to their work and to the world. For more information, please visit fhcrc.org

Dean Forbes | EurekAlert!
Further information:
http://www.fhcrc.org

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Satellite-based Laser Measurement Technology against Climate Change

17.01.2017 | Machine Engineering

Studying fundamental particles in materials

17.01.2017 | Physics and Astronomy

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>