Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Most patients recover from 'chemo-brain' by 5 years after stem cell transplant

04.05.2011
However, fine-motor and memory deficits persist for some after 5 years

Many patients who undergo bone marrow or blood stem cell transplantation to treat blood cancers or a "pre-leukemic" condition called myelodysplasia experience a decline in mental and fine motor skills due to the toll of their disease and its treatment.

A new study led by researchers at Fred Hutchinson Cancer Research Center, published in the May 2, 2011 online edition of the Journal of Clinical Oncology, found that overall, these effects are largely temporary and that most patients can expect a return to normal motor and memory function within five years. However, the study also found that deficits in fine motor skills and verbal memory remained for a significant percentage of patients and warrant more attention by health care providers.

It has been widely documented that powerful chemotherapy drugs that leukemia and lymphoma patients receive prior to hematopoietic transplantation (HCT) – as well as medicines to combat graft-versus-host disease – can impact motor and memory skills. The purpose of the new study, led by Karen Syrjala, Ph.D., director of Biobehavioral Sciences at the Hutchinson Center, was to determine whether patients recover from these neurocognitive deficits within five years of transplant.

For the study, Syrjala and colleagues identified 92 patients who had received an allogeneic (cells from a donor other than themselves) bone marrow or stem cell transplant for chronic myeloid leukemia, acute leukemia, lymphoma or myelodysplastic syndrome, an umbrella term for several "pre-cancerous" diseases in which the bone marrow does not function normally.

For comparison purposes, the patients were asked to nominate a case-matched control, such as a sibling or friend of the same gender and similar age who had neither received a transplant nor were in active cancer treatment. The transplant patients and control subjects were then given a battery of tests – all by the same test giver – to assess their memory and motor skills.

The tests included immediate and delayed recall of a list of words, saying out loud as many words as possible that begin with specific letters, the ability to sequentially link letters and numbers on paper, learning to match numbers and symbols and write the symbols on paper to match random numbers, and putting toothpick-sized pegs into holes as fast as possible.

Analysis of the tests results showed that most patients made substantial improvements in neurocognitive function over the five years after their transplant. "However, contrary to expectations, neither motor dexterity nor verbal learning and retention improved between one and five years," the authors wrote. "Deficits were most notable in motor speed and dexterity."

Described as mostly mild, the neurocognitive dysfunctions remained at five years for twice as many long-term survivors (41.5 percent) versus controls (19.7 percent).

Syrjala said the researchers were surprised by the evidence of continued impairment.

"We really thought the rates would be lower," Syrjala said. "We were thrilled to see that people recovered substantially, but we also were surprised that so many people did continue to have measurable deficits in some areas even after five years."

Syrjala said the reasons for persistent deficits are unknown and more research is needed to examine the causes. One theory is that some cancers, especially leukemia and lymphoma, are "whole-body" cancers because blood circulates throughout the body and these diseases may cause their own neurocognitive impacts, in addition to what chemotherapy may contribute.

"The major clinical implication of this research is to assure HCT recipients and their health care providers that further progress will occur in their information processing capacity between one and five years after treatment," the authors wrote. "However, it is equally important to validate for long-term survivors that not all HCT recipients fully recover neurocognitive function by five years. These results provide further indication of the need for cognitive rehabilitation strategies after one year for those residual deficits."

The investigation is the first to prospectively follow the same group of patients for five years for any cancer, according to the authors. The study builds upon previous findings by Syrjala and colleagues, published in 2004, which followed the same group of patients to one year after transplant. That study also found that neurocognitive impacts of transplantation are largely temporary.

Co-authors on the paper included researchers from the University of Washington School of Medicine and School of Social Work and Arizona Medical Psychology. Grants from the National Cancer Institute funded the research.

At Fred Hutchinson Cancer Research Center, our interdisciplinary teams of world-renowned scientists and humanitarians work together to prevent, diagnose and treat cancer, HIV/AIDS and other diseases. Our researchers, including three Nobel laureates, bring a relentless pursuit and passion for health, knowledge and hope to their work and to the world. For more information, please visit fhcrc.org

Dean Forbes | EurekAlert!
Further information:
http://www.fhcrc.org

More articles from Health and Medicine:

nachricht Penn studies find promise for innovations in liquid biopsies
30.03.2017 | University of Pennsylvania School of Medicine

nachricht 'On-off switch' brings researchers a step closer to potential HIV vaccine
30.03.2017 | University of Nebraska-Lincoln

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>