Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Most patients recover from 'chemo-brain' by 5 years after stem cell transplant

04.05.2011
However, fine-motor and memory deficits persist for some after 5 years

Many patients who undergo bone marrow or blood stem cell transplantation to treat blood cancers or a "pre-leukemic" condition called myelodysplasia experience a decline in mental and fine motor skills due to the toll of their disease and its treatment.

A new study led by researchers at Fred Hutchinson Cancer Research Center, published in the May 2, 2011 online edition of the Journal of Clinical Oncology, found that overall, these effects are largely temporary and that most patients can expect a return to normal motor and memory function within five years. However, the study also found that deficits in fine motor skills and verbal memory remained for a significant percentage of patients and warrant more attention by health care providers.

It has been widely documented that powerful chemotherapy drugs that leukemia and lymphoma patients receive prior to hematopoietic transplantation (HCT) – as well as medicines to combat graft-versus-host disease – can impact motor and memory skills. The purpose of the new study, led by Karen Syrjala, Ph.D., director of Biobehavioral Sciences at the Hutchinson Center, was to determine whether patients recover from these neurocognitive deficits within five years of transplant.

For the study, Syrjala and colleagues identified 92 patients who had received an allogeneic (cells from a donor other than themselves) bone marrow or stem cell transplant for chronic myeloid leukemia, acute leukemia, lymphoma or myelodysplastic syndrome, an umbrella term for several "pre-cancerous" diseases in which the bone marrow does not function normally.

For comparison purposes, the patients were asked to nominate a case-matched control, such as a sibling or friend of the same gender and similar age who had neither received a transplant nor were in active cancer treatment. The transplant patients and control subjects were then given a battery of tests – all by the same test giver – to assess their memory and motor skills.

The tests included immediate and delayed recall of a list of words, saying out loud as many words as possible that begin with specific letters, the ability to sequentially link letters and numbers on paper, learning to match numbers and symbols and write the symbols on paper to match random numbers, and putting toothpick-sized pegs into holes as fast as possible.

Analysis of the tests results showed that most patients made substantial improvements in neurocognitive function over the five years after their transplant. "However, contrary to expectations, neither motor dexterity nor verbal learning and retention improved between one and five years," the authors wrote. "Deficits were most notable in motor speed and dexterity."

Described as mostly mild, the neurocognitive dysfunctions remained at five years for twice as many long-term survivors (41.5 percent) versus controls (19.7 percent).

Syrjala said the researchers were surprised by the evidence of continued impairment.

"We really thought the rates would be lower," Syrjala said. "We were thrilled to see that people recovered substantially, but we also were surprised that so many people did continue to have measurable deficits in some areas even after five years."

Syrjala said the reasons for persistent deficits are unknown and more research is needed to examine the causes. One theory is that some cancers, especially leukemia and lymphoma, are "whole-body" cancers because blood circulates throughout the body and these diseases may cause their own neurocognitive impacts, in addition to what chemotherapy may contribute.

"The major clinical implication of this research is to assure HCT recipients and their health care providers that further progress will occur in their information processing capacity between one and five years after treatment," the authors wrote. "However, it is equally important to validate for long-term survivors that not all HCT recipients fully recover neurocognitive function by five years. These results provide further indication of the need for cognitive rehabilitation strategies after one year for those residual deficits."

The investigation is the first to prospectively follow the same group of patients for five years for any cancer, according to the authors. The study builds upon previous findings by Syrjala and colleagues, published in 2004, which followed the same group of patients to one year after transplant. That study also found that neurocognitive impacts of transplantation are largely temporary.

Co-authors on the paper included researchers from the University of Washington School of Medicine and School of Social Work and Arizona Medical Psychology. Grants from the National Cancer Institute funded the research.

At Fred Hutchinson Cancer Research Center, our interdisciplinary teams of world-renowned scientists and humanitarians work together to prevent, diagnose and treat cancer, HIV/AIDS and other diseases. Our researchers, including three Nobel laureates, bring a relentless pursuit and passion for health, knowledge and hope to their work and to the world. For more information, please visit fhcrc.org

Dean Forbes | EurekAlert!
Further information:
http://www.fhcrc.org

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>