Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Patients can emit small, influenza-containing particles into the air during routine care

31.01.2013
A new study suggests that patients with influenza can emit small virus-containing particles into the surrounding air during routine patient care, potentially exposing health care providers to influenza.

Published in The Journal of Infectious Diseases, the findings raise the possibility that current influenza infection control recommendations may not always be adequate to protect providers from influenza during routine patient care in hospitals.

Werner E. Bischoff, MD, PhD, and colleagues from the Wake Forest School of Medicine in North Carolina screened 94 patients for flu-like symptoms during the 2010-2011 influenza season. Study participants had been admitted to the emergency department (52 patients) or an inpatient care unit (42 patients) of Wake Forest Baptist Medical Center, where vaccination for influenza is mandatory for health care providers.

Nasopharyngeal swabs were collected from each patient. Samples were analyzed by rapid testing and by PCR analysis. Air samples were obtained by placing three six-stage air samplers from within 1 foot, 3 feet, and 6 feet of patients. No aerosol-generating procedures—such as bronchoscopy, sputum induction, intubation, or cardiopulmonary resuscitation—were conducted while air sampling took place. During air sampling, the number of patients' coughs and sneezes were counted and assessed for severity. Patients also completed a questionnaire at admission to report symptoms and the number of days they were sick.

Of the 94 patients enrolled, 61 patients (65 percent) tested positive for influenza virus. Twenty-six (43 percent) released influenza virus into the air. Five patients (19 percent) emitted up to 32 times more virus than others. This group of patients with influenza, described by the researchers as "super-emitters," suggested that some patients may be more likely to transmit influenza than others. High concentration of influenza virus released into the air was associated with high viral loads in nasopharyngeal samples. Patients who emitted more virus also reported greater severity of illness.

The current belief is that influenza virus is spread primarily by large particles traveling up to a maximum of 3 to 6 feet from an infected person. Recommended precautions for health providers focus on preventing transmission by large droplets and following special instructions during aerosol-generating procedures. In this study, Dr. Bischoff and his team discovered that the majority of influenza virus in the air samples analyzed was found in small particles during non-aerosol-generating activities up to a 6-foot distance from the patient's head, and that concentrations of virus decreased with distance. The study addressed only the presence of influenza-containing particles near patients during routine care, not the actual transmission of influenza infection to others.

Fitted respirators are currently required for health care providers during aerosol-generating procedures with patients. During routine, non-aerosol-generating patient care, the current precautions recommend that providers wear a non-fitted face mask. Based on their findings, Dr. Bischoff and investigators are concerned that providers may still be exposed to infectious dosages of influenza virus up to 6 feet from patients with small wide-spreading particles potentially exceeding the current suggested exposure zones.

These findings suggest that current infection control recommendations may need to be reevaluated, the study authors concluded. The detection of "super-emitters" raises concerns about how individuals with high viral load may impact the spread of influenza, they noted. "Our study offers new evidence of the natural emission of influenza and may provide a better understanding of how to best protect health care providers during routine care activities," the study authors wrote. However, studies of influenza virus transmission will be necessary before the role of super-emitters can be firmly established, they noted.

In an accompanying editorial, Caroline Breese Hall, MD, from the University of Rochester School of Medicine and Dentistry in New York, highlighted the importance of a better understanding of influenza transmission as global travel has increased the likelihood of a rapid worldwide influenza outbreak. Although the study did not show that influenza transmission actually occurred, Dr. Hall noted, the findings "question the traditional belief that influenza is primarily spread by close contact with an infected person or by direct contact with infectious secretions."

While the study adds to the current understanding of the risks of influenza infection among patients and health providers, the findings also help define questions that still need to be answered, Dr. Hall noted. (Editor's Note: Dr. Hall died on Dec. 10, 2012, at the age of 73, shortly after completion of the editorial accompanying this study.)

Whatever protective equipment or infection control practices are used for preventing influenza transmission, vaccination of health providers remains a fundamental and key part of protecting them from influenza, noted Dr. William Schaffner, professor medicine and chair of the department of preventive medicine at Vanderbilt University School of Medicine in Nashville, Tenn., who was not involved with the study. "Influenza vaccination, although not perfect, is the best tool we have to protect health care workers—and their patients—from influenza illness."

Fast Facts:

1) Researchers found that patients with influenza can emit small, influenza virus-containing particles into the surrounding air during routine patient care, potentially exposing health care providers to influenza virus up to 6 feet away from infected patients.

2) Five patients (19 percent) in study were "super-emitters" who emitted up to 32 times more virus than others. Patients who emit a higher concentration of influenza virus also reported greater severity of illness.

3) The findings suggest that more research on how influenza is transmitted is needed and that current influenza infection control recommendations for health providers may need to be reevaluated.

The study and the accompanying editorial are available online. They are embargoed until 12:01 a.m. EST on Thursday, Jan. 31, 2013:

Published continuously since 1904, The Journal of Infectious Diseases is the premier global journal for original research on infectious diseases. The editors welcome major articles and brief reports describing research results on microbiology, immunology, epidemiology, and related disciplines, on the pathogenesis, diagnosis, and treatment of infectious diseases; on the microbes that cause them; and on disorders of host immune responses. The journal is an official publication of the Infectious Diseases Society of America (IDSA). Based in Arlington, Va., IDSA is a professional society representing nearly 10,000 physicians and scientists who specialize in infectious diseases.

Jerica Pitts | EurekAlert!
Further information:
http://www.idsociety.org

More articles from Health and Medicine:

nachricht Exploring a new frontier of cyber-physical systems: The human body
18.05.2015 | National Science Foundation

nachricht Soft-tissue engineering for hard-working cartilage
18.05.2015 | Technische Universitaet Muenchen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Analytical lamps monitor air pollution in cities

26.05.2015 | Ecology, The Environment and Conservation

DNA double helix does double duty in assembling arrays of nanoparticles

26.05.2015 | Life Sciences

Turn That Defect Upside Down

26.05.2015 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>