Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parallels Between Cancers, Infection Suppression Reported

04.01.2011
Same Proteins Involved, but Cancer Takes Hold When Response Gets Out of Control, CCNY Biologists Report

The host insect is far from defenseless, however. In Drosophila (fruit flies), larvae activate humoral immunity in the fat body and mount a robust cellular response that encapsulates and chokes off the wasp egg.

New research by Dr. Shubha Govind, professor of biology at The City College of New York, and colleagues reveals parallels between how this mechanism fights the wasp infection and the way blood cancer develops. “There are fundamental similarities in the processes,” she explains. “The response to wasp infection is similar to acute inflammation while the cancer is akin to chronic inflammation in mammals, where regulation of the response to an infection also goes out of control.”

Professor Govind reports that the immune system that counters wasp egg infection is highly restrained. The system works like a thermostat, with certain proteins detecting the infection and triggering the immune reactions. Once the egg has been destroyed the immune reactions come to a halt.

However, when the regulating mechanism goes haywire, cancer can develop. Through sumoylation, the correct balance between positive and negative factors is achieved, Professor Govind and colleagues report.

“There is strong evidence that the fundamental mechanism of regulation uncovered in flies also works in humans,” she notes. “Because of the molecular similarities between flies and mammals, it may be possible to use flies to test drugs for potential anti-inflammatory effects in human disease.” While such drugs would not cure cancer, they could control inflammation and, perhaps, delay cancer progression.

Tiny parasitoid wasps can play an important role in controlling the populations of other insect species by laying their eggs inside the larvae of these species. A newly hatched wasp gradually eats the host alive and takes over its body.

Other potential applications are in pest control for agriculture. Instead of using insecticides, parasitoids with the ability to suppress the hosts’ immune systems could be used to kill insect pests. Also, insecticides could be developed that, at very low concentrations, would weaken the immune systems of host insects and enable parasitoid eggs to succeed, Professor Govind adds.

The findings were published last month in “PLoS: Pathogens,” a peer-reviewed, open-access journal published by the Public Library of Science. Contributing scientists were: Indira Paddibhatla, Mark J. Lee, Marta E. Kalamarz and Roberto Ferrarese. The work was funded by the National Institutes of General Medicine, U.S. Department of Agriculture and PSC-CUNY.

Media Contact
Ellis Simon P | 212-650-6460 E | esimon@ccny.cuny.edu

Ellis Simon | EurekAlert!
Further information:
http://www.ccny.cuny.edu

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>