Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ovarian cancer subtypes may predict response to bevacizumab

02.06.2014

Molecular sequencing could identify ovarian cancer patients who are most likely to benefit from treatment with bevacizumab (Avastin), a Mayo Clinic-led study has found. Results of the research were presented today at the 2014 American Society of Clinical Oncology Annual Meeting.

The addition of bevacizumab to standard therapy extended progression-free survival more for ovarian cancer patients with molecular subtypes labeled as "proliferative" or "mesenchymal" compared to those with subtypes labeled as "immunoreactive" or "differentiated," says Sean Dowdy, M.D., a Mayo Clinic gynecologic oncologist and senior author of the study. "Though our study is very preliminary, it does suggest that we are getting close to the point where we could use sequencing data to choose more effective and less toxic therapies for patients."

Dr. Dowdy says the U.S. spends about $3 billion a year on bevacizumab for cancer treatment. "Unfortunately, two-thirds of those patients don't respond to the drug, which means we are just giving them toxicity with no benefit. This expression data will help us choose which patients should receive this drug."

Bevacizumab is an angiogenesis inhibitor, a drug that slows the growth of new blood vessels that help cancers grow and spread. An international phase 3 clinical trial known as ICON7 has recently shown that adding this drug to the first-line chemotherapy drugs carboplatin and paclitaxel can improve progression-free survival of ovarian cancer patients.

Dr. Dowdy and his colleagues wanted to determine if the response to this new treatment could be predicted by looking at the molecular makeup of ovarian tumors. First, the researchers used gene expression arrays to analyze biopsies preserved in paraffin-embedded tissue blocks from ICON7 patients.

Then, they used the molecular classification already established by the National Cancer Institute's Cancer Genome Atlas (TCGA) project to separate the patients into four subtypes of the disease, based on precise patterns of genes that had been turned "on" or "off" in their tumors. Of the 359 patients studied, 20 percent had the differentiated subtype, 34 percent had the immunoreactive subtype, 19 percent had the mesenchymal subtype, and 27 percent had the proliferative subtype.

Finally, Dr. Dowdy and his colleagues looked for an association between these molecular subtypes and responses to treatment. They found that patients with the proliferative and mesenchymal subtypes fared the best, with 10.1-and 8.1-month improvements in progression-free survival after treatment with bevacizumab, respectively. In comparison, patients with the immunoreactive and differentiated subtypes only experienced an improvement of 3.8 and 3.7 months, respectively. Similar differences were seen between subtypes when the investigators looked at another measure of treatment response, overall survival.

"It makes sense that patients with proliferative and mesenchymal subtypes would respond the most favorably to bevacizumab, because the same genes and molecular pathways that are implicated in those subtypes are also the ones affected by the drug," says Dr. Dowdy.

Once the rest of the data from the ICON7 trial are published, Dr. Dowdy and his colleagues plan to reanalyze their results to see if even stronger associations can be found between subtypes and outcomes.

They also hope to validate their results in another set of patients, a necessary step before molecular sequencing can identify the patients most likely to respond to this particular drug.

"Right now bevacizumab is not universally used in the first-line treatment of ovarian cancer in the United States because it gives marginal improvement in survival, is extremely expensive at about $100,000 per year, and may have toxic side effects," says Dr. Dowdy. "But if we could identify those patients who will see a 10-month improvement in progression-free survival, it would be worth treating them with the drug. On the other hand, avoiding the use of bevacizumab in patients unlikely to respond will allow us to reduce unnecessary toxicity and prescribe other, potentially more effective drugs for that particular patient."

###

Co-authors include Boris Winterhoff, M.D., Ann Oberg, Ph.D. ,Chen Wang, Ph.D., Shaun Riska, Viji Shridhar, Ph.D., Ellen Goode, Ph.D., and Lynn Hartmann, M.D., all of Mayo Clinic; and S. Kommoss, University of Tübingen, Germany, G.E. Konecny, University of California Los Angeles, J. Fan,Illumina Inc., F. Kommoss,Institute of Pathology, Mannheim, Germany, A. du Bois, Arbeitsgemeinschaft für Gynäkologische Onkologie, Germany,F. Hilpert, Arbeitsgemeinschaft für Gynäkologische Onkologie, Germany,J. Chien, University of Kansas Cancer Center, A.C. Embleton, University College London, U.K., M. Parmar, University College London, U.K., R. Kaplan, University College London, U.K., T. Perren, University of Leeds, U.K. and J. Pfisterer, Arbeitsgemeinschaft für Gynäkologische Onkologie, Germany.

The Mayo Clinic SPORE in ovarian cancer and the Mayo Clinic Cancer Center funded the study.

About Mayo Clinic Cancer Center

As a leading institution funded by the National Cancer Institute, Mayo Clinic Cancer Center conducts basic, clinical and population science research, translating discoveries into improved methods for prevention, diagnosis, prognosis and therapy. For information on cancer clinical trials, call 507-538-7623.

About Mayo Clinic

Recognizing 150 years of serving humanity in 2014, Mayo Clinic is a nonprofit worldwide leader in medical care, research and education for people from all walks of life. For more information, visit 150 years.mayoclinic.org, http://www.mayoclinic.org/ and newsnetwork.mayoclinic.org.

MEDIA CONTACT:

Joe Dangor, Mayo Clinic Public Affairs, 507-284-5005, newsbureau@mayo.edu

Joe Dangor | Eurek Alert!

Further reports about: Cancer differentiated drugs mesenchymal ovarian subtype subtypes toxic

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>