Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Osteoporosis – new approach to treatment

07.01.2014
All over the world, researchers are working on new treatments for osteoporosis.

One potential target is a protein whose structures have now been decoded in detail by scientists from the University of Würzburg. The scientific journal Plos One covers their work in its latest issue.

One in three women and one in five men in the world over the age of 50 currently have excessively low bone density according to the International Osteoporosis Foundation. They therefore carry a significantly increased risk of suffering a bone fracture. The pathological decrease in the density of bone substance, also known as osteoporosis, often develops unnoticed. In healthy people, bone-building and bone-degrading processes occur in equilibrium, whereas degradation predominates in osteoporosis patients.

Sights set on the protein sclerostin

It is no wonder that scientists and pharmaceutical companies are working hard to develop new treatments for osteoporosis. One possible target is the protein sclerostin, which plays a pivotal role in what happens inside bones. “Sclerostin inhibits an important signaling pathway found in bone cells,” explains Professor Thomas Müller. The structural biologist from the Julius von Sachs Institute at the University of Würzburg has spent a long time working with this protein. In 2009, for example, he managed to decode its three-dimensional structure.

Müller was able to show that the protein is composed of three loops that emanate from a central knot. The first and third loops together form a defined structure, while the second loop is highly flexible. “The latter region in particular appears to be primarily responsible for the bone growth inhibitory effect,” says Müller.

Sclerostin inhibits bone growth

Sclerostin acts on the so-called Wnt signaling pathway in the body. This pathway plays a major role in ensuring that bone tissue remains stable. “Wnt proteins form a complex with two types of receptor at the cell surface; this then activates genes that are important for bone growth,” explains Müller. Sclerostin intervenes in this process and, in so doing, prevents activation of the Wnt signaling pathway, thereby generally inhibiting bone growth. “So, if we can block sclerostin using antibodies, for example, it will be possible to restore bone density even in already advanced osteoporosis,” says the scientist.

Now Thomas Müller and his team have succeeded in determining the structures in the sclerostin loop structure that are important for binding the protein to its receptor. Their achievement is reported on in the latest issue of the scientific journal Plos One. In addition, the team has shown that a change to the central knot also inhibits sclerostin. “Our studies reveal that the architecture of sclerostin is also important to the biological activity of the protein,” says Müller.

Building on these results, the scientists have already been able to develop an antibody that neutralizes sclerostin in collaboration with the company AbD Serotec. Its impact on bone growth is currently being examined.

Also helpful with excessive bone growth

This new knowledge concerning the way in which sclerostin works is not just useful for developing a treatment for osteoporosis. It is also conceivable that it may be helpful in the reverse direction, so to speak, namely for treating the bone diseases sclerosteosis and Van Buchem’s syndrome. “People afflicted by these very rare hereditary diseases form too little sclerostin or none at all and therefore suffer from excessive bone growth,” says Müller. In these patients, the bone mass grows so much that it wreaks nerve damage. Since the skull is also affected, loss of sight and hearing are common consequences in the absence of surgery; in extreme cases, excessive intracranial pressure can even lead to death.

With the new findings that show which areas of sclerostin are responsible for its effect and how these must be structured, scientists can now also design peptides that have a sclerostin-like effect, explains Müller. A “minimized” peptide-based sclerostin could represent a new, non-surgical treatment option for sclerosteosis and Van Buchem patients that would significantly improve their quality of life.

Mutational Analysis of Sclerostin Shows Importance of the Flexible Loop and the Cystine-Knot for Wnt-Signaling Inhibition. Verena Boschert, Maarten van Dinther, Stella Weidauer, Katharina van Pee, Eva-Maria Muth, Peter ten Dijke, Thomas D. Mueller. doi:10.1371/journal.pone.0081710

Contact

Prof. Dr. Thomas Müller,
T: +49 (0)931 31-89207, mueller@botanik.uni-wuerzburg.de

Gunnar Bartsch | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Health and Medicine:

nachricht Live imaging reveals how wound healing influences cancer
01.07.2015 | EMBO

nachricht Using bacterial 'fight clubs' to find new drugs
30.06.2015 | Vanderbilt University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Im Focus: Bionic eye clinical trial results show long-term safety, efficacy vision-restoring implant

Patients using Argus II experienced significant improvement in visual function and quality of life

The three-year clinical trial results of the retinal implant popularly known as the "bionic eye," have proven the long-term efficacy, safety and reliability of...

Im Focus: Lasers for Fast Internet in Space – Space Technology from Aachen

On June 23, the second Sentinel mission was launched from the space mission launch center in Kourou. A critical component of Aachen is on board. Researchers at the Fraunhofer Institute for Laser Technology ILT and Tesat-Spacecom have jointly developed the know-how for space-qualified laser components. For the Sentinel mission the diode laser pump module of the Laser Communication Terminal LCT was planned and constructed in Aachen in cooperation with the manufacturer of the LCT, Tesat-Spacecom, and the Ferdinand Braun Institute.

After eight years of preparation, in the early morning of June 23 the time had come: in Kourou in French Guiana, the European Space Agency launched the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

Offshore wind park Westermost Rough officially inaugurated

01.07.2015 | Press release

Siemens Velaro train wins "Red Dot" award

01.07.2015 | Awards Funding

Liquids on Fibers - Slipping or Flowing?

01.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>