Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Orthopaedic smart device provides personalized medicine

15.02.2012
Tiny wireless sensors enable physicians to collect objective, quantifiable information

Imagine a smart sensor customized to provide vital, real-time information about a patient's recent orthopaedic surgery. Instead of relying on X-rays or invasive procedures, surgeons will be able to collect diagnostic data from an implantable sensor.

A study presented at the Orthopaedic Research Society 2012 Annual Meeting in San Francisco outlined this remarkable technology that promises to make post-surgical diagnosis and follow up more precise, efficient, and cost-effective.

"The sensor provides opportunities to make specific and detailed diagnostics for a particular patient and to tailor care based on very objective and quantitative measures," said Eric H. Ledet, PhD, Assistant Professor, Rensselaer Polytechnic Institute.

"This highly unique sensor is very small (4 mm diameter and 500 microns thick), is wireless, batteryless, and requires no telemetry within the body. Its simplicity makes it less prone to failure and very inexpensive to produce," Dr. Ledet explained.

The orthopaedic implant acts as a carrier for the sensor. The wireless sensor can monitor load, strain, motion, temperature, and pressure in the challenging in vivo environment. It can be placed into a spinal or fracture fixation implant, for example, to determine the patient's progress.

"For the patient that is progressing well, the information from the sensor enables the physician to determine that the patient can return to work without risk of injury," said Dr. Ledet. "The number of lost days at work is reduced."

It can also alert the physician to potential problems, indicating that additional interventions may be needed. "By maintaining a simple platform, we're able to customize the sensor and make it very, very small so it can be incorporated into a lot of different implants," said Rebecca A. Wachs, MS, Rensselaer Polytechnic Institute. "By changing one small parameter, we can change the sensitivity of the sensor itself."

Dr. Ledet reports a number of major breakthroughs with the sensor technology in the last eighteen months. Although the researchers are manually producing the sensor, they anticipate it will eventually be mass produced—driving the price down further.

About the Orthopaedic Research Society (ORS):

The Orthopaedic Research Society (ORS) is the pre-eminent organization for the advancement of musculoskeletal research. It seeks to transform the future through global multidisciplinary collaborations—focusing on the complex challenges of orthopaedic treatment. The ORS advances the global orthopaedic research agenda through excellence in research, education, collaboration, communication and advocacy. The ORS Annual Meeting and publication of the Journal of Orthopaedic Research provide vital forums for the musculoskeletal community to communicate the current state of orthopaedic research.

Annie Hayashi | EurekAlert!
Further information:
http://www.ors.org

More articles from Health and Medicine:

nachricht Improving memory with magnets
28.03.2017 | McGill University

nachricht Graphene-based neural probes probe brain activity in high resolution
28.03.2017 | Graphene Flagship

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>