Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Open cancer surgery set to become a thing of the past

25.09.2008
The surgeon’s knife is playing an ever smaller role in the treatment of cancer, as it is replaced by increasingly efficient and safe radiation therapy techniques. Progress in radiation technology will also lead to better detection rates for cancer. This is according to Professor Freek Beekman, who will give his inaugural speech at TU Delft on Wednesday, 24 September.

In his inaugural address, Kanker, krijg de straling , Professor Beekman says that radiation in the form of photons or particles is playing an increasingly important role in the detection and treatment of cancer. The low concentrations of radioactive molecules which gather in tumours, known as ‘tumour seekers’, show up well with techniques such as Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT).

Such techniques mean that tumours can be discovered earlier more often than using X-rays, and it is also more often possible to ascertain properties of tumour cells without removing a sample of the tissue. Doctors can choose the best treatment for the individual patient more quickly and easily.

Removal
Destroying tumours by using radiation, rather than chemotherapy and operations, is also becoming an ever more common method of treatment and, Beekman says, the accuracy of this kind of therapy has improved considerably in recent years. When cancer is treated using external beams of radiation (as in radiotherapy), it is actually not only the tumour that is exposed to large amounts of radiation, but also any healthy tissue that is in the way of the beam. ‘One example of a very powerful emerging technique is the use of a radiation beam consisting of particles (protons), instead of photons. This kind of beam reaches its peak intensity at the site of the tumour. This greatly reduces radiation damage in healthy tissue around the tumour.’

Finally, it is increasingly possible to treat tumours internally, for example by using tumour seekers that emit particles and destroy the tumour on the spot. If this kind of treatment only reaches the tumour and avoids harming healthy tissue, it will make this method superior to proton therapy.

U-SPECT
At TU Delft, Beekman will focus particularly on improving medical instruments, such as the U-SPECT scanner he developed himself. This Ultra-high resolution Single Photon Emission Computed Tomographer has significant advantages over other scanning techniques. The challenge is now to make the U-SPECT more precise and more versatile and use it to create better tumour seekers. The U-SPECT is now only available for use with small laboratory animals, but a version for humans is in the design phase. The diagnosis and treatment of cancer could, according to Beekman, be greatly improved by sharper SPECT images of patients. Various tracers mean that metastases, for example, are visible more quickly. We also hope that the effectiveness of chemotherapy can be seen very soon after beginning treatment by using the right tumour seekers, or even stop therapy with little chance of success from being started at all.
Medical Delta
‘The current quest for more efficient medical screening therapies, radiotherapy and tumour seekers is gradually leading towards better treatments for cancer,’ says Beekman. ‘Progress is gradual and it must be said that there are still a number of technical obstacles. But on the other hand, the type of instrumentation we are talking about here is not always rocket science. The problems we face are mostly not insurmountable.’

Improved technology means that we still have a hope of success in the detection and treatment of cancer. Beekman says it is important that hospitals and engineers work closely together.

The TU Delft is a part of Medical Delta, which provides the structure for this cooperation to take place. In Medical Delta, TU Delft cooperates with Erasmus University, the University of Leiden and their teaching hospitals.

Frank Nuijens | alfa
Further information:
http://www.tudelft.nl

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>