Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Open cancer surgery set to become a thing of the past

The surgeon’s knife is playing an ever smaller role in the treatment of cancer, as it is replaced by increasingly efficient and safe radiation therapy techniques. Progress in radiation technology will also lead to better detection rates for cancer. This is according to Professor Freek Beekman, who will give his inaugural speech at TU Delft on Wednesday, 24 September.

In his inaugural address, Kanker, krijg de straling , Professor Beekman says that radiation in the form of photons or particles is playing an increasingly important role in the detection and treatment of cancer. The low concentrations of radioactive molecules which gather in tumours, known as ‘tumour seekers’, show up well with techniques such as Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT).

Such techniques mean that tumours can be discovered earlier more often than using X-rays, and it is also more often possible to ascertain properties of tumour cells without removing a sample of the tissue. Doctors can choose the best treatment for the individual patient more quickly and easily.

Destroying tumours by using radiation, rather than chemotherapy and operations, is also becoming an ever more common method of treatment and, Beekman says, the accuracy of this kind of therapy has improved considerably in recent years. When cancer is treated using external beams of radiation (as in radiotherapy), it is actually not only the tumour that is exposed to large amounts of radiation, but also any healthy tissue that is in the way of the beam. ‘One example of a very powerful emerging technique is the use of a radiation beam consisting of particles (protons), instead of photons. This kind of beam reaches its peak intensity at the site of the tumour. This greatly reduces radiation damage in healthy tissue around the tumour.’

Finally, it is increasingly possible to treat tumours internally, for example by using tumour seekers that emit particles and destroy the tumour on the spot. If this kind of treatment only reaches the tumour and avoids harming healthy tissue, it will make this method superior to proton therapy.

At TU Delft, Beekman will focus particularly on improving medical instruments, such as the U-SPECT scanner he developed himself. This Ultra-high resolution Single Photon Emission Computed Tomographer has significant advantages over other scanning techniques. The challenge is now to make the U-SPECT more precise and more versatile and use it to create better tumour seekers. The U-SPECT is now only available for use with small laboratory animals, but a version for humans is in the design phase. The diagnosis and treatment of cancer could, according to Beekman, be greatly improved by sharper SPECT images of patients. Various tracers mean that metastases, for example, are visible more quickly. We also hope that the effectiveness of chemotherapy can be seen very soon after beginning treatment by using the right tumour seekers, or even stop therapy with little chance of success from being started at all.
Medical Delta
‘The current quest for more efficient medical screening therapies, radiotherapy and tumour seekers is gradually leading towards better treatments for cancer,’ says Beekman. ‘Progress is gradual and it must be said that there are still a number of technical obstacles. But on the other hand, the type of instrumentation we are talking about here is not always rocket science. The problems we face are mostly not insurmountable.’

Improved technology means that we still have a hope of success in the detection and treatment of cancer. Beekman says it is important that hospitals and engineers work closely together.

The TU Delft is a part of Medical Delta, which provides the structure for this cooperation to take place. In Medical Delta, TU Delft cooperates with Erasmus University, the University of Leiden and their teaching hospitals.

Frank Nuijens | alfa
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>