Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Open cancer surgery set to become a thing of the past

25.09.2008
The surgeon’s knife is playing an ever smaller role in the treatment of cancer, as it is replaced by increasingly efficient and safe radiation therapy techniques. Progress in radiation technology will also lead to better detection rates for cancer. This is according to Professor Freek Beekman, who will give his inaugural speech at TU Delft on Wednesday, 24 September.

In his inaugural address, Kanker, krijg de straling , Professor Beekman says that radiation in the form of photons or particles is playing an increasingly important role in the detection and treatment of cancer. The low concentrations of radioactive molecules which gather in tumours, known as ‘tumour seekers’, show up well with techniques such as Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT).

Such techniques mean that tumours can be discovered earlier more often than using X-rays, and it is also more often possible to ascertain properties of tumour cells without removing a sample of the tissue. Doctors can choose the best treatment for the individual patient more quickly and easily.

Removal
Destroying tumours by using radiation, rather than chemotherapy and operations, is also becoming an ever more common method of treatment and, Beekman says, the accuracy of this kind of therapy has improved considerably in recent years. When cancer is treated using external beams of radiation (as in radiotherapy), it is actually not only the tumour that is exposed to large amounts of radiation, but also any healthy tissue that is in the way of the beam. ‘One example of a very powerful emerging technique is the use of a radiation beam consisting of particles (protons), instead of photons. This kind of beam reaches its peak intensity at the site of the tumour. This greatly reduces radiation damage in healthy tissue around the tumour.’

Finally, it is increasingly possible to treat tumours internally, for example by using tumour seekers that emit particles and destroy the tumour on the spot. If this kind of treatment only reaches the tumour and avoids harming healthy tissue, it will make this method superior to proton therapy.

U-SPECT
At TU Delft, Beekman will focus particularly on improving medical instruments, such as the U-SPECT scanner he developed himself. This Ultra-high resolution Single Photon Emission Computed Tomographer has significant advantages over other scanning techniques. The challenge is now to make the U-SPECT more precise and more versatile and use it to create better tumour seekers. The U-SPECT is now only available for use with small laboratory animals, but a version for humans is in the design phase. The diagnosis and treatment of cancer could, according to Beekman, be greatly improved by sharper SPECT images of patients. Various tracers mean that metastases, for example, are visible more quickly. We also hope that the effectiveness of chemotherapy can be seen very soon after beginning treatment by using the right tumour seekers, or even stop therapy with little chance of success from being started at all.
Medical Delta
‘The current quest for more efficient medical screening therapies, radiotherapy and tumour seekers is gradually leading towards better treatments for cancer,’ says Beekman. ‘Progress is gradual and it must be said that there are still a number of technical obstacles. But on the other hand, the type of instrumentation we are talking about here is not always rocket science. The problems we face are mostly not insurmountable.’

Improved technology means that we still have a hope of success in the detection and treatment of cancer. Beekman says it is important that hospitals and engineers work closely together.

The TU Delft is a part of Medical Delta, which provides the structure for this cooperation to take place. In Medical Delta, TU Delft cooperates with Erasmus University, the University of Leiden and their teaching hospitals.

Frank Nuijens | alfa
Further information:
http://www.tudelft.nl

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>