Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New test could identify infants with rare insulin disease


A rare form of a devastating disease which causes low blood sugar levels in babies and infants may now be recognised earlier thanks to a new test developed by researchers from The University of Manchester.

Congenital hyperinsulinism starves a baby's brain of blood sugar and can lead to lifelong brain damage or permanent disability according to previous research carried out by the Manchester team.

The condition occurs when specialised cells in the pancreas release too much insulin which causes frequent low sugar episodes - the clinical opposite of diabetes. Treatment includes drugs to reduce insulin release but in the most serious cases the pancreas is removed.

For some infants with this disease, the release of excess insulin is due to mutations in genes which govern the way our bodies control insulin release. But for more than two thirds of child patients the genetic causes are not yet known.

Genes and hormones were analysed in 13 children with congenital hyperinsulisnism at the Manchester Children's Hospital and the findings have been published in The Journal of Pediatrics.

Dr Karen Cosgrove from the Faculty of Life Sciences led the research: "We have discovered a new clinical test which can identify congenital hyperinsulinism in some patients with no known genetic cause of the disease. This is the first step to understanding what causes the disease in these particular patients. In future the test may influence how these children are treated medically, perhaps even avoiding the need to have their pancreas removed."

The new test measures a pair of hormones called incretins which are released by specialised cells in the gut when food is passing through. The hormones normally tell the cells in the pancreas to release more insulin to regulate sugar levels in our blood. If the child's body releases too much incretin hormones, the pancreas will release too much insulin causing dangerous low blood sugar levels.

"Although we are the first researchers to report high incretin hormone levels in patients with congenital hyperinsulinism, further studies are needed to see if our test works on a larger group of patients" says Dr Cosgrove.

Researchers from The University of Manchester along with consultants from the Manchester Children's Hospital, part of Central Manchester University Hospitals NHS Foundation Trust, teamed up for the study. Royal Manchester Children's Hospital is the base for the Northern Congenital Hyperinsulinism (NorCHI) service, a national centre for treatment of this disease.

Doctor Indi Banerjee, Consultant in Paediatric Endocrinology at Royal Manchester Children's Hospital and clinical lead for NorCHI says: "Our new results are timely since clinical trials of a new incretin-blocking treatment for congenital hyperinsulinism have recently started. We anticipate that our clinical test will help to identify the patients who are likely to benefit from this new treatment the most."

Julie Raskin, Executive Director of Congenital Hyperinsulinism International is impressed with the research: "A new diagnostic test for this devastating disease is welcome news to the international hyperinsulinism patient community because timely diagnosis is key to reducing the chance of brain damage and death, and the research also suggests a path to treatment other than sub-total pancreatectomy, which almost always leads to diabetes."

Morwenna Grills | Eurek Alert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>