Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insights into the etiology of age-related macular degeneration by a large genetic study

23.12.2015

Vision loss is a major burden for individuals. One of the leading causes of blindness in the elderly, Age-related Macular Degeneration, has been the target of a recent large international genetic study. The researchers, teaming up from around the world, aimed at unravelling the genetic catalogue of this disabling disease and identified new genetic regions relevant for the disease including one that is solely related to one subtype of this disease. Overall this large study provides insights into the genetic architecture of age-related macular degeneration and to future designs of genetic studies.

Age-related macular degeneration is a leading cause of blindness and severe disability that affects ten million older individuals worldwide. Therapy options are limited as currently therapy is only available for patients with one of the two disease subtypes, the so-called wet AMD, and even this therapy is symptomatic and no cure.

Unfortunately, it is not well understood by doctors or scientists why some people develop the disease while others remain disease-free. A major portion of the risk for AMD is the combination of genetic variants a person possesses; other risk factors include smoking or intensive light exposure. Finding the exact combination of genetic variants that puts people at risk for AMD is a difficult task that requires evaluating information from many thousands of individuals.

To get at the goal of better understanding the genetic influence of AMD risk, an international group of scientists from 26 study sites, including scientists from the University of Regensburg, joined forces to create and evaluate an extensive genome-wide data set that provided an excellent platform for a thorough search for gene regions that may influence AMD risk.

Using medical information and DNA from blood collected from more than 43,000 participants with and without AMD across the world, this group applied novel methods, that enabled the investigation of 12 million genetic variants. Not only did they find 34 gene regions for AMD including 16 that have not been described before. The new regions provide new clues to search for cures for this severe medical condition.

Most interestingly, this international group also identified a genetic region around the MMP9 gene that showed only an effect for the wet AMD, but not for dry AMD. This new knowledge might lead to a better understanding of why the therapy is more effective in some patients than in others.

The genetic make-up of a patient might also help explain why some treated patients suffer from a recurrence: To some extent this might be simply that the genetics hits again.

The investigators also had a specific focus on rare variants that alter the protein. If such a variant is found to be relevant for the disease, the mechanisms by what this variant exerts its effect is much easier to derive than for other variants: the specific change in the protein itself is then very likely the cause. While several such variants for AMD were depicted by this study, the study made also clear that these variants can be very rare and hard to depict.

This work also substantiates a strong role of the University of Regensburg. Researchers from the UR Institute of Human Genetics and the Department of Genetic Epidemiology have not only contributed study data, but also helped organize the international consortium (Prof. Weber) and co-lead and conducted (Prof. Heid and team) the analysis of this complex and high-dimensional data.

Overall, the results published in Nature Genetics (NG-A41068R2) help understand what makes individuals susceptible to the disease, which patients might benefit from a particular form of treatment, and what might be worthwhile next steps towards a cure that would be the hope of millions of patients (www.nature.com/ng/journal/v45/n4/full/ng.2578.html ).

Contact:
Prof. Dr. Iris Heid
Universität Regensburg
Chair for Genetic Epidemiology
Tel.: +49 (0)941 944-5210/5211
Iris.Heid@klinik.uni-regensburg.de

Alexander Schlaak | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-regensburg.de/

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>