Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insights into the etiology of age-related macular degeneration by a large genetic study

23.12.2015

Vision loss is a major burden for individuals. One of the leading causes of blindness in the elderly, Age-related Macular Degeneration, has been the target of a recent large international genetic study. The researchers, teaming up from around the world, aimed at unravelling the genetic catalogue of this disabling disease and identified new genetic regions relevant for the disease including one that is solely related to one subtype of this disease. Overall this large study provides insights into the genetic architecture of age-related macular degeneration and to future designs of genetic studies.

Age-related macular degeneration is a leading cause of blindness and severe disability that affects ten million older individuals worldwide. Therapy options are limited as currently therapy is only available for patients with one of the two disease subtypes, the so-called wet AMD, and even this therapy is symptomatic and no cure.

Unfortunately, it is not well understood by doctors or scientists why some people develop the disease while others remain disease-free. A major portion of the risk for AMD is the combination of genetic variants a person possesses; other risk factors include smoking or intensive light exposure. Finding the exact combination of genetic variants that puts people at risk for AMD is a difficult task that requires evaluating information from many thousands of individuals.

To get at the goal of better understanding the genetic influence of AMD risk, an international group of scientists from 26 study sites, including scientists from the University of Regensburg, joined forces to create and evaluate an extensive genome-wide data set that provided an excellent platform for a thorough search for gene regions that may influence AMD risk.

Using medical information and DNA from blood collected from more than 43,000 participants with and without AMD across the world, this group applied novel methods, that enabled the investigation of 12 million genetic variants. Not only did they find 34 gene regions for AMD including 16 that have not been described before. The new regions provide new clues to search for cures for this severe medical condition.

Most interestingly, this international group also identified a genetic region around the MMP9 gene that showed only an effect for the wet AMD, but not for dry AMD. This new knowledge might lead to a better understanding of why the therapy is more effective in some patients than in others.

The genetic make-up of a patient might also help explain why some treated patients suffer from a recurrence: To some extent this might be simply that the genetics hits again.

The investigators also had a specific focus on rare variants that alter the protein. If such a variant is found to be relevant for the disease, the mechanisms by what this variant exerts its effect is much easier to derive than for other variants: the specific change in the protein itself is then very likely the cause. While several such variants for AMD were depicted by this study, the study made also clear that these variants can be very rare and hard to depict.

This work also substantiates a strong role of the University of Regensburg. Researchers from the UR Institute of Human Genetics and the Department of Genetic Epidemiology have not only contributed study data, but also helped organize the international consortium (Prof. Weber) and co-lead and conducted (Prof. Heid and team) the analysis of this complex and high-dimensional data.

Overall, the results published in Nature Genetics (NG-A41068R2) help understand what makes individuals susceptible to the disease, which patients might benefit from a particular form of treatment, and what might be worthwhile next steps towards a cure that would be the hope of millions of patients (www.nature.com/ng/journal/v45/n4/full/ng.2578.html ).

Contact:
Prof. Dr. Iris Heid
Universität Regensburg
Chair for Genetic Epidemiology
Tel.: +49 (0)941 944-5210/5211
Iris.Heid@klinik.uni-regensburg.de

Alexander Schlaak | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-regensburg.de/

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>