Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insights into the etiology of age-related macular degeneration by a large genetic study

23.12.2015

Vision loss is a major burden for individuals. One of the leading causes of blindness in the elderly, Age-related Macular Degeneration, has been the target of a recent large international genetic study. The researchers, teaming up from around the world, aimed at unravelling the genetic catalogue of this disabling disease and identified new genetic regions relevant for the disease including one that is solely related to one subtype of this disease. Overall this large study provides insights into the genetic architecture of age-related macular degeneration and to future designs of genetic studies.

Age-related macular degeneration is a leading cause of blindness and severe disability that affects ten million older individuals worldwide. Therapy options are limited as currently therapy is only available for patients with one of the two disease subtypes, the so-called wet AMD, and even this therapy is symptomatic and no cure.

Unfortunately, it is not well understood by doctors or scientists why some people develop the disease while others remain disease-free. A major portion of the risk for AMD is the combination of genetic variants a person possesses; other risk factors include smoking or intensive light exposure. Finding the exact combination of genetic variants that puts people at risk for AMD is a difficult task that requires evaluating information from many thousands of individuals.

To get at the goal of better understanding the genetic influence of AMD risk, an international group of scientists from 26 study sites, including scientists from the University of Regensburg, joined forces to create and evaluate an extensive genome-wide data set that provided an excellent platform for a thorough search for gene regions that may influence AMD risk.

Using medical information and DNA from blood collected from more than 43,000 participants with and without AMD across the world, this group applied novel methods, that enabled the investigation of 12 million genetic variants. Not only did they find 34 gene regions for AMD including 16 that have not been described before. The new regions provide new clues to search for cures for this severe medical condition.

Most interestingly, this international group also identified a genetic region around the MMP9 gene that showed only an effect for the wet AMD, but not for dry AMD. This new knowledge might lead to a better understanding of why the therapy is more effective in some patients than in others.

The genetic make-up of a patient might also help explain why some treated patients suffer from a recurrence: To some extent this might be simply that the genetics hits again.

The investigators also had a specific focus on rare variants that alter the protein. If such a variant is found to be relevant for the disease, the mechanisms by what this variant exerts its effect is much easier to derive than for other variants: the specific change in the protein itself is then very likely the cause. While several such variants for AMD were depicted by this study, the study made also clear that these variants can be very rare and hard to depict.

This work also substantiates a strong role of the University of Regensburg. Researchers from the UR Institute of Human Genetics and the Department of Genetic Epidemiology have not only contributed study data, but also helped organize the international consortium (Prof. Weber) and co-lead and conducted (Prof. Heid and team) the analysis of this complex and high-dimensional data.

Overall, the results published in Nature Genetics (NG-A41068R2) help understand what makes individuals susceptible to the disease, which patients might benefit from a particular form of treatment, and what might be worthwhile next steps towards a cure that would be the hope of millions of patients (www.nature.com/ng/journal/v45/n4/full/ng.2578.html ).

Contact:
Prof. Dr. Iris Heid
Universität Regensburg
Chair for Genetic Epidemiology
Tel.: +49 (0)941 944-5210/5211
Iris.Heid@klinik.uni-regensburg.de

Alexander Schlaak | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-regensburg.de/

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>