Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New driver of atherosclerosis offers potential as therapeutic target

20.06.2014

A new driver of atherosclerosis has been identified by researchers at UT Southwestern Medical Center. This molecule, known as 27HC (27-hydroxycholesterol), has been found to exacerbate the development of the condition, and may prove to be a promising therapeutic target.

Atherosclerosis is characterized by the build-up of lesions (or plaques) formed from lipids, such as cholesterol and fatty acids. Ruptured plaques can partially or completely block blood flow, potentially leading to a heart attack or stroke. A member of a larger family of molecules known as oxysterols, 27HC is produced during the normal breakdown of cholesterol and is known to accumulate in atherosclerotic plaques.


This is Dr. Shaul,UT Southwestern Medical Center.

Credit: UT Southwestern

The new study, conducted by a team of UT Southwestern researchers led by senior author Dr. Philip Shaul, sought to identify the impact of 27HC on atherosclerosis. Dr. Shaul is Vice Chair for Research and Professor of Pediatrics, and Director of the Center for Pulmonary and Vascular Biology at UT Southwestern. The study's findings – first-authored by Dr. Michihisa Umetani, Assistant Professor of Pediatrics and Pharmacology – were recently published in Cell Metabolism.

Using animal models and other strategies, the researchers found that 27HC promotes the formation of atherosclerotic plaques, causing a doubling in the accumulation of lipids in the arterial wall. 27HC achieves this buildup through mechanisms mediated by estrogen receptors, which normally enable the hormone estrogen to protect against the development and progression of atherosclerosis. By blocking estrogen receptors, 27HC prevents the beneficial effects of estrogen and promotes atherosclerosis.

"When 27HC is present, estrogen's protective effects are only observed at very high levels of the hormone," said Dr. Shaul, holder of the Associates First Capital Corporation Distinguished Chair in Pediatrics. "This result may explain why hormone therapy with estrogen does not provide cardiovascular benefit in women with pre-existing atherosclerosis, in which 27HC is abundant in the vascular wall."

Probing further into the underlying mechanisms, the researchers discovered that 27HC triggers inflammation in the arterial wall, a key step in the establishment of atherosclerotic plaques. This detrimental effect was characterized by exaggerated production of molecules that drive inflammation, called cytokines, and enhanced attachment on the arterial wall of immune cells known as macrophages. It is the recruitment of macrophages that then accumulate lipids (such as cholesterol) that triggers the formation of atherosclerotic plaques.

"Although statins have had a dramatic impact on cardiovascular health by lowering cholesterol, we still need complementary methods to combat atherosclerosis," Dr. Shaul said. "Targeting 27HC, either by lowering the levels of this compound or by inhibiting its actions, could potentially provide a complementary approach to preventing vascular disease."

###

Other UT Southwestern researchers involved in the study include Dr. Pritam Ghosh, Assistant Professor of Internal Medicine; Dr. Tomonori Ishikawa, postdoctoral research fellow in Pediatrics; Dr. Chieko Mineo, Associate Professor of Pediatrics; and Junko Umetani and Mohamed Ahmed, research assistants in Pediatrics.

The study was funded by support from the National Institutes of Health, the American Diabetes Association, and an unrestricted endowment provided to Dr. Shaul by the Associates First Capital Corporation.

About UT Southwestern Medical Center

UT Southwestern, one of the premier academic medical centers in the nation, integrates pioneering biomedical research with exceptional clinical care and education. The institution's faculty includes many distinguished members, including six who have been awarded Nobel Prizes since 1985. Numbering more than 2,700, the faculty is responsible for groundbreaking medical advances and is committed to translating science-driven research quickly to new clinical treatments. UT Southwestern physicians provide medical care in 40 specialties to nearly 91,000 hospitalized patients and oversee more than 2 million outpatient visits a year.

Remekca Owens | Eurek Alert!

Further reports about: atherosclerosis cholesterol hormone inflammation levels macrophages vascular

More articles from Health and Medicine:

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

nachricht Study advances gene therapy for glaucoma
17.01.2018 | University of Wisconsin-Madison

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>