Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New approach to tackle inherited nervous disease

30.09.2015

Scientists from the University of Würzburg have discovered a promising approach to treat a genetically caused nervous disease. Instead of resorting to gene therapy, the scientists have targeted phagocytes they identified as promoters of the disease.

Charcot-Marie-Tooth (CMT) disease is a group of inherited disorders of the peripheral nervous system characterised by loss of nerve fibres, muscle tissue and impaired touch sensation. Early symptoms include paralysis and loss of muscle tissue in the feet and legs expanding to the hands and lower arms as the disease progresses. In severe cases, sufferers need a wheelchair; and there is no efficient therapy available at present.

Publication in the journal Brain

This could change in the foreseeable future: Scientists at the Department of Neurology of the University Hospital of Würzburg have found a target for therapy that was successfully applied in animal tests. The team of Professor Rudolf Martini, head of Experimental Developmental Neurobiology at the Department of Neurology has now published these findings in the renowned journal Brain.

"Normally, one would expect a gene therapy approach when treating an inherited disease," Martini explains. But he and his team took a different direction: They blocked a receptor on the surface of special cells of the immune system, the so-called macrophages.

A semiochemical gives the cue to attack

In previous studies conducted over several years, the scientists had used model mice to demonstrate that these macrophages cause the genetically predisposed nerve damage to occur in the first place. "You could say that they act as a promoter of the disease," Martini further. A special semiochemical, the cytokine colony-stimulating factor (CSF) -1, signals the macrophages to attack the nerve fibres.

"Astonishingly, CSF-1 is not expressed by the mutated Schwann cells, but by hitherto neglected nerve fibroblasts," Martini says. Schwann cells form the myelin sheaths in the peripheral nervous system which act as a kind of insulation of the myelinated nerve fibres. Moreover, they are essential for the survival of the nerve fibres and thus for keeping the nerves functional.

Even though around 80 disease genes have been identified for CMT neuropathies so far, the three most common forms of this disorder are caused by mutations of myelin associated genes of the Schwann cells. How the fibroblasts are informed about the defective Schwann cells is still unknown, but the scientists hope to decipher the mechanism during further studies.

Visible successes without side effects

In the study, the scientists fed a synthetic CSF-1 receptor inhibitor to mice suffering from CMT. As a result, the symptoms of two different forms of CMT were alleviated significantly and without side effects. The muscular strength experiments were particularly impressive and relevant for patients: "While untreated model mice lost up to 25 percent of their muscular strength due to the disease, the treated mutants cannot be distinguished from their healthy counterparts in terms of muscular strength," Martini says.

Hopes for a quick transfer to clinical practice

The scientists now believe that this approach is also highly significant for the treatment of humans. "Similar inhibitors are already being used in clinical studies to treat rheumatoid arthritis and different tumours," Martini explains. Protracted approval procedures to use the inhibitor on humans are thus already under way.

Dr. Brian West is one of the co-authors of the study besides the members of Martini's team. He is the research director of the Californian company Plexxikon which developed the inhibitor. The study has already drawn much attention, for example, in the form of a scientific comment by Professor Steven S. Scherer (Philadelphia), an international expert in CMT. In addition to Deutsche Forschungsgemeinschaft, the project received considerable funding from Charcot-Marie-Tooth Association in the US, which recently appointed Professor Rudolf Martini to its scientific advisory board.

According to Martini, the successful research project demonstrates that after exploring all other possibilities animal experiments are crucial to finding new approaches to treat and ultimately heal so far incurable human diseases.

Targeting the colony stimulating factor 1 receptor alleviates two forms of Charcot–Marie–Tooth disease in mice. Dennis Klein, Ágnes Patzkó , David Schreiber, Anemoon van Hauwermeiren, Michaela Baier, Janos Groh, Brian L. West and Rudolf Martini. BRAIN, published online August 21, 2015. doi:10.1093/brain/awv240

Contact

Prof. Dr. Rudolf Martini, Phone: +49 931 201-23268, rudolf.martini@mail.uni-wuerzburg.de

Gunnar Bartsch | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-wuerzburg.de

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>