Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neurons in human skin perform advanced calculations

01.09.2014

Neurons in human skin perform advanced calculations, previously believed that only the brain could perform. This is according to a study from Umeå University in Sweden published in the journal Nature Neuroscience.

A fundamental characteristic of neurons that extend into the skin and record touch, so-called first-order neurons in the tactile system, is that they branch in the skin so that each neuron reports touch from many highly-sensitive zones on the skin.

According to researchers at the Department of Integrative Medical Biology, IMB, Umeå University, this branching allows first-order tactile neurons not only to send signals to the brain that something has touched the skin, but also process geometric data about the object touching the skin.

- Our work has shown that two types of first-order tactile neurons that supply the sensitive skin at our fingertips not only signal information about when and how intensely an object is touched, but also information about the touched object's shape, says Andrew Pruszynski, who is one of the researchers behind the study.

The study also shows that the sensitivity of individual neurons to the shape of an object depends on the layout of the neuron’s highly-sensitive zones in the skin.

- Perhaps the most surprising result of our study is that these peripheral neurons, which are engaged when a fingertip examines an object, perform the same type of calculations done by neurons in the cerebral cortex. Somewhat simplified, it means that our touch experiences are already processed by neurons in the skin before they reach the brain for further processing, says Andrew Pruszynski.

For more information about the study, please contact Andrew Pruszynski, post doc at the Department of Integrative Medical Biology, IMB, Umeå University. He is English-speaking and can be reached at:
Phone: +46 90 786 51 09; Mobile: +46 70 610 80 96
E-mail: andrew.pruszynski@umu.se

Pressofficer Mattias Grundstrom Mitz; mattias.grundstrom.mitz@adm.umu.se or +46-90 786 6465

Weitere Informationen:

http://www.nature.com/neuro/journal/vaop/ncurrent/full/nn.3804.html article in Nature Neuroscience

Mattias Grundstrom Mitz | idw - Informationsdienst Wissenschaft
Further information:
http://www.vr.se

Further reports about: Biology Department Forschungsrat IMB Mitz Mobile Neuroscience cerebral processing signals skin types

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>