Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nature’s pharmacy – plant-based active substance kills renal cancer cells

17.03.2015

Extracted from the Phyllanthus engleri tree, englerin A kills the cancer cells by increasing their calcium concentration

Nature holds many compounds in store that are of great value to medical research. Recently, for example, scientists discovered that a substance contained in an African shrub kills cancer cells in the kidney.


The bark of Phyllanthus engleri contains a chemical, Englerin A, a substance which kills kidney cancer cells.

© Bart Wursten / www.zimbabweflora.co.zw

Together with colleagues from Berlin and Leeds, researchers from the Max Planck Institute of Molecular Physiology in Dortmund discovered that the molecule known as englerin A significantly increases the concentration of calcium in cells, causing the cancer cells to die.

Englerin A only activates the calcium channels of renal cancer cells, but not those of healthy cells. In cooperation with the Lead Discovery Center in Dortmund, the scientists now want to find out whether englerin A could potentially be used as an innovative drug to treat renal cancer in the future.

In its native habitat in southern Africa, Phyllanthus engleri has long been known to have medicinal properties. The shrub or small tree, which was formerly classified as belonging to the spurge family, is most commonly found in the dry savannahs of Tanzania, Zambia, Malawi, Zimbabwe, Mozambique and South Africa.

In Tanzania, for example, the plant’s roots are used to treat epilepsy, and chewing the leaves and fruits is said to alleviate coughs and stomach aches. A decoction made from the roots is even said to be effective against bilharziosis and gonorrhoea. At the same time, the plant also contains strong toxins that can cause lethal poisoning.

In 2009, American scientists isolated more than 30 substances found in Phyllanthus engleri and tested their efficacy on cancer cells. They discovered that a specific type of compound taken from the bark of the tree – a variant known as (–)-englerin A – is particularly effective against renal cancer cells and some other forms of cancer.

That same year, the group led by Mathias Christmann, who now conducts research at the Freie Universität Berlin, synthesised this complex compound. The precursor they used is the primary constituent in the essential oil of catnip (Nepeta cataria): nepetalactone – a substance that causes cats to lapse into a state of ecstasy. Nepetalactone is therefore a renewable raw material extracted from a plant that is more readily available than Phyllantus engleri. This is decisive for the further use of englerin A, as it means that larger amounts of the substance can be produced.

However, exactly how englerin A kills cancer cells remained a mystery. Until recently, it was believed that englerin A might target a variant of the enzyme protein kinase C. The Max Planck scientists have now discovered though that cells that respond to englerin A particularly well do not contain this type of enzyme at all. Instead, the researchers focused on a family of calcium channels known as TRPCs (canonical transient receptor potential channels), which are found in the membranes of renal cells.

Different renal cancer cells form different numbers of these channels. The measurements showed that adding englerin A causes the calcium concentration inside these cells to rise so significantly that the cells die within a few minutes.

“We studied cancer cells that produce a lot of TRPC4. These cells are particularly sensitive to englerin A. In cells that do not produce any TRPC4 or only produce normal amounts, the calcium levels do not rise as much. Therefore, these cells don’t die,” explains Slava Ziegler from the Max Planck Institute of Molecular Physiology. However, the researchers still do not know whether the overproduction of TRPCs is the sole cause of the dying off of the cancer cells.

Englerin A thus acts specifically on cancer cells in the kidney. “This property gives the substance a major advantage over other anti-cancer drugs, because it means the side effects afflicting healthy cells could possibly be prevented,” says Herbert Waldmann from the Max Planck Institute in Dortmund, where, among other topics, he conducts research into the use of naturally occurring substances in the development of active agents.

Together with the Lead Discovery Center in Dortmund, the researchers now want to determine whether englerin A is suitable as an anti-cancer drug. The Center, which was founded by the Max Planck Society, helps bring potential active agents from basic research to clinical trial. “Englerin A is a prime example of an active substance that harbours great potential, but also a significant risk. In the current phase there would be hardly any commercial partners willing to provide the funding for further studies. The Lead Discovery Center can bridge this gap between basic research and medicine,” says Waldmann.


Contact
Prof. Dr. Herbert Waldmann
Max Planck Institute of Molecular Physiology, Dortmund
Phone: +49 231 133-2400
Fax: +49 231 133-2499
Email: herbert.waldmann@mpi-dortmund.mpg.de
 
Prof. Dr. Mathias Christmann
Institut für Chemie und Biochemie - Organische Chemie
Freie Universität Berlin
Phone: +49 30 838-60182
Email:m.christmann@fu-berlin.de

Dr. Peter Herter
Max Planck Institute of Molecular Physiology, Dortmund
Phone: +49 231 133-2500
Fax: +49 231 133-2599
Email: peter.herter@mpi-dortmund.mpg.de


Original publication
Yasemin Akbulut, Hannah J. Gaunt, Katsuhiko Muraki, Melanie J. Ludlow, Mohamed S. Amer, Alexander Bruns, Naveen S. Vasudev, Lea Radtke, Matthieu Willot, Sven Hahn, Tobias Seitz, Slava Ziegler, Mathias Christmann, David J Beech, and Herbert Waldmann

(-)-Englerin A: A Potent and Selective Activator of TRPC4 and TRPC5 Calcium Channels

Angewandte Chemie, 17 March 2015

Dr. Peter Herter | Max Planck Institute of Molecular Physiology, Dortmund
Further information:
http://www.mpg.de/9039542/renal-cancer-englerin-a

More articles from Health and Medicine:

nachricht 'Exciting' discovery on path to develop new type of vaccine to treat global viruses
18.09.2017 | University of Southampton

nachricht A new approach to high insulin levels
18.09.2017 | Schweizerischer Nationalfonds SNF

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>