Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nature’s pharmacy – plant-based active substance kills renal cancer cells

17.03.2015

Extracted from the Phyllanthus engleri tree, englerin A kills the cancer cells by increasing their calcium concentration

Nature holds many compounds in store that are of great value to medical research. Recently, for example, scientists discovered that a substance contained in an African shrub kills cancer cells in the kidney.


The bark of Phyllanthus engleri contains a chemical, Englerin A, a substance which kills kidney cancer cells.

© Bart Wursten / www.zimbabweflora.co.zw

Together with colleagues from Berlin and Leeds, researchers from the Max Planck Institute of Molecular Physiology in Dortmund discovered that the molecule known as englerin A significantly increases the concentration of calcium in cells, causing the cancer cells to die.

Englerin A only activates the calcium channels of renal cancer cells, but not those of healthy cells. In cooperation with the Lead Discovery Center in Dortmund, the scientists now want to find out whether englerin A could potentially be used as an innovative drug to treat renal cancer in the future.

In its native habitat in southern Africa, Phyllanthus engleri has long been known to have medicinal properties. The shrub or small tree, which was formerly classified as belonging to the spurge family, is most commonly found in the dry savannahs of Tanzania, Zambia, Malawi, Zimbabwe, Mozambique and South Africa.

In Tanzania, for example, the plant’s roots are used to treat epilepsy, and chewing the leaves and fruits is said to alleviate coughs and stomach aches. A decoction made from the roots is even said to be effective against bilharziosis and gonorrhoea. At the same time, the plant also contains strong toxins that can cause lethal poisoning.

In 2009, American scientists isolated more than 30 substances found in Phyllanthus engleri and tested their efficacy on cancer cells. They discovered that a specific type of compound taken from the bark of the tree – a variant known as (–)-englerin A – is particularly effective against renal cancer cells and some other forms of cancer.

That same year, the group led by Mathias Christmann, who now conducts research at the Freie Universität Berlin, synthesised this complex compound. The precursor they used is the primary constituent in the essential oil of catnip (Nepeta cataria): nepetalactone – a substance that causes cats to lapse into a state of ecstasy. Nepetalactone is therefore a renewable raw material extracted from a plant that is more readily available than Phyllantus engleri. This is decisive for the further use of englerin A, as it means that larger amounts of the substance can be produced.

However, exactly how englerin A kills cancer cells remained a mystery. Until recently, it was believed that englerin A might target a variant of the enzyme protein kinase C. The Max Planck scientists have now discovered though that cells that respond to englerin A particularly well do not contain this type of enzyme at all. Instead, the researchers focused on a family of calcium channels known as TRPCs (canonical transient receptor potential channels), which are found in the membranes of renal cells.

Different renal cancer cells form different numbers of these channels. The measurements showed that adding englerin A causes the calcium concentration inside these cells to rise so significantly that the cells die within a few minutes.

“We studied cancer cells that produce a lot of TRPC4. These cells are particularly sensitive to englerin A. In cells that do not produce any TRPC4 or only produce normal amounts, the calcium levels do not rise as much. Therefore, these cells don’t die,” explains Slava Ziegler from the Max Planck Institute of Molecular Physiology. However, the researchers still do not know whether the overproduction of TRPCs is the sole cause of the dying off of the cancer cells.

Englerin A thus acts specifically on cancer cells in the kidney. “This property gives the substance a major advantage over other anti-cancer drugs, because it means the side effects afflicting healthy cells could possibly be prevented,” says Herbert Waldmann from the Max Planck Institute in Dortmund, where, among other topics, he conducts research into the use of naturally occurring substances in the development of active agents.

Together with the Lead Discovery Center in Dortmund, the researchers now want to determine whether englerin A is suitable as an anti-cancer drug. The Center, which was founded by the Max Planck Society, helps bring potential active agents from basic research to clinical trial. “Englerin A is a prime example of an active substance that harbours great potential, but also a significant risk. In the current phase there would be hardly any commercial partners willing to provide the funding for further studies. The Lead Discovery Center can bridge this gap between basic research and medicine,” says Waldmann.


Contact
Prof. Dr. Herbert Waldmann
Max Planck Institute of Molecular Physiology, Dortmund
Phone: +49 231 133-2400
Fax: +49 231 133-2499
Email: herbert.waldmann@mpi-dortmund.mpg.de
 
Prof. Dr. Mathias Christmann
Institut für Chemie und Biochemie - Organische Chemie
Freie Universität Berlin
Phone: +49 30 838-60182
Email:m.christmann@fu-berlin.de

Dr. Peter Herter
Max Planck Institute of Molecular Physiology, Dortmund
Phone: +49 231 133-2500
Fax: +49 231 133-2599
Email: peter.herter@mpi-dortmund.mpg.de


Original publication
Yasemin Akbulut, Hannah J. Gaunt, Katsuhiko Muraki, Melanie J. Ludlow, Mohamed S. Amer, Alexander Bruns, Naveen S. Vasudev, Lea Radtke, Matthieu Willot, Sven Hahn, Tobias Seitz, Slava Ziegler, Mathias Christmann, David J Beech, and Herbert Waldmann

(-)-Englerin A: A Potent and Selective Activator of TRPC4 and TRPC5 Calcium Channels

Angewandte Chemie, 17 March 2015

Dr. Peter Herter | Max Planck Institute of Molecular Physiology, Dortmund
Further information:
http://www.mpg.de/9039542/renal-cancer-englerin-a

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>