Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nature's medicine cabinet could yield hundreds of new drugs

NYBG scientist says the plant world has "great potential" as a source of new medicines

There are probably at least 500 medically useful chemicals awaiting discovery in plant species whose chemical constituents have not yet been evaluated for their potential to cure or treat disease, according to a new analysis by a New York Botanical Garden scientist who has more than 15 years of experience in collecting plants for natural-products discovery programs.

Currently, 135 drugs on the market are derived directly from plants; the analysis indicates that at least three times as many disease-fighting substances have yet to be found that could be developed into drugs or used as the basis for further drug research.

"Clearly, plant diversity has not been exhausted, and there is still great potential in the plant world," said James S. Miller, Ph.D., Dean and Vice President for Science at the Botanical Garden.

Dr. Miller's analysis, "The Discovery of Medicines from Plants: A Current Biological Perspective," is published in the December issue of the peer-reviewed journal Economic Botany.

To arrive at his estimate, Dr. Miller used a formula based on the ratio of the number of drugs that have been developed from plants to the number of plants that were screened to find those drugs. He then applied that ratio to the number of plant species that have not yet been screened.

Because of uncertainties in some of those numbers, the formula yields a range of potential drug discoveries. While there is no general agreement among botanists about the number of plant species that are likely to exist, Dr. Miller concluded that there are 300,000 to 350,000 species of plants. Of those, he determined that the chemistry of only 2,000 species has been thoroughly studied, and perhaps only 60,000 species have been evaluated even partially for medicinally useful chemicals.

Working with those numbers, Dr. Miller calculated that there are likely to be a minimum of 540 to 653 new drugs waiting to be discovered from plants; the actual number could be much greater.

"These calculations indicate that there is significant value in continuing to screen plants for the discovery of novel bioactive medicinally useful compounds," concludes Dr. Miller, who has run natural-products discovery programs that have collected specimens in North America, Central and Southeast Asia, and Africa for government agencies, pharmaceutical companies, and academic programs.

As part of his Economic Botany paper, Dr. Miller reviews the disappointing history of past plant-screening efforts and evaluates the potential for future programs.

Technological advances in the 1970s and 1980s gave medical researchers the capacity to evaluate large numbers of plant samples. That prompted the federal government and large pharmaceutical companies to institute aggressive plant collecting and screening programs. Those programs led to the development of several important drugs such as Taxol from Taxus brevifolia (used in cancer treatment) and Camptothecin from Camptotheca acuminata (derivatives of which are used to treat cancer). Other drugs indirectly trace their discovery to natural-products research, including the anti-viral Oseltamivir, which derives from Illicium anisatum and is marketed in the United States as Tamiflu.

The number of drug discoveries, however, was substantially less than anticipated. By the early 2000s, many of the large pharmaceutical companies had abandoned their efforts.

Dr. Miller argues that one possible explanation for the low yield is the relatively crude way in which plant extracts were tested for their pharmaceutical potential. Plants may contain as many as 500 to 800 different chemical compounds, but the screening programs of the late 20th century used extracts made from a whole plant or at best extracts that contained many hundreds of compounds.

Under those circumstances, one compound may interfere with the action of another, or the amount of one compound may be too small to register in a mix of hundreds of chemicals.

To correct this problem, new technologies now allow researchers to separate complex mixtures of natural products into a "library" of relatively pure compounds that can be tested individually. A 2002 study demonstrated that testing such libraries dramatically improves discovery rates.

Bringing these advances together with refinements in collecting strategies could lead to what Dr. Miller calls a "second renaissance" of natural-products discovery.

Miller undertook his analysis to highlight the fact that despite past collecting programs, the plant world represents a poorly explored source of potentially lifesaving drugs. That adds urgency, he said, to efforts to conserve natural habitats so that species are not driven to extinction before they can be studied.

"The natural world has a great and diverse array of interesting chemicals that have been only minimally studied and still hold considerable potential," he writes.

Stevenson Swanson | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>