Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nature's medicine cabinet could yield hundreds of new drugs

13.12.2011
NYBG scientist says the plant world has "great potential" as a source of new medicines

There are probably at least 500 medically useful chemicals awaiting discovery in plant species whose chemical constituents have not yet been evaluated for their potential to cure or treat disease, according to a new analysis by a New York Botanical Garden scientist who has more than 15 years of experience in collecting plants for natural-products discovery programs.

Currently, 135 drugs on the market are derived directly from plants; the analysis indicates that at least three times as many disease-fighting substances have yet to be found that could be developed into drugs or used as the basis for further drug research.

"Clearly, plant diversity has not been exhausted, and there is still great potential in the plant world," said James S. Miller, Ph.D., Dean and Vice President for Science at the Botanical Garden.

Dr. Miller's analysis, "The Discovery of Medicines from Plants: A Current Biological Perspective," is published in the December issue of the peer-reviewed journal Economic Botany.

To arrive at his estimate, Dr. Miller used a formula based on the ratio of the number of drugs that have been developed from plants to the number of plants that were screened to find those drugs. He then applied that ratio to the number of plant species that have not yet been screened.

Because of uncertainties in some of those numbers, the formula yields a range of potential drug discoveries. While there is no general agreement among botanists about the number of plant species that are likely to exist, Dr. Miller concluded that there are 300,000 to 350,000 species of plants. Of those, he determined that the chemistry of only 2,000 species has been thoroughly studied, and perhaps only 60,000 species have been evaluated even partially for medicinally useful chemicals.

Working with those numbers, Dr. Miller calculated that there are likely to be a minimum of 540 to 653 new drugs waiting to be discovered from plants; the actual number could be much greater.

"These calculations indicate that there is significant value in continuing to screen plants for the discovery of novel bioactive medicinally useful compounds," concludes Dr. Miller, who has run natural-products discovery programs that have collected specimens in North America, Central and Southeast Asia, and Africa for government agencies, pharmaceutical companies, and academic programs.

As part of his Economic Botany paper, Dr. Miller reviews the disappointing history of past plant-screening efforts and evaluates the potential for future programs.

Technological advances in the 1970s and 1980s gave medical researchers the capacity to evaluate large numbers of plant samples. That prompted the federal government and large pharmaceutical companies to institute aggressive plant collecting and screening programs. Those programs led to the development of several important drugs such as Taxol from Taxus brevifolia (used in cancer treatment) and Camptothecin from Camptotheca acuminata (derivatives of which are used to treat cancer). Other drugs indirectly trace their discovery to natural-products research, including the anti-viral Oseltamivir, which derives from Illicium anisatum and is marketed in the United States as Tamiflu.

The number of drug discoveries, however, was substantially less than anticipated. By the early 2000s, many of the large pharmaceutical companies had abandoned their efforts.

Dr. Miller argues that one possible explanation for the low yield is the relatively crude way in which plant extracts were tested for their pharmaceutical potential. Plants may contain as many as 500 to 800 different chemical compounds, but the screening programs of the late 20th century used extracts made from a whole plant or at best extracts that contained many hundreds of compounds.

Under those circumstances, one compound may interfere with the action of another, or the amount of one compound may be too small to register in a mix of hundreds of chemicals.

To correct this problem, new technologies now allow researchers to separate complex mixtures of natural products into a "library" of relatively pure compounds that can be tested individually. A 2002 study demonstrated that testing such libraries dramatically improves discovery rates.

Bringing these advances together with refinements in collecting strategies could lead to what Dr. Miller calls a "second renaissance" of natural-products discovery.

Miller undertook his analysis to highlight the fact that despite past collecting programs, the plant world represents a poorly explored source of potentially lifesaving drugs. That adds urgency, he said, to efforts to conserve natural habitats so that species are not driven to extinction before they can be studied.

"The natural world has a great and diverse array of interesting chemicals that have been only minimally studied and still hold considerable potential," he writes.

Stevenson Swanson | EurekAlert!
Further information:
http://www.nybg.org

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Energy-Efficient Building Operation: Monitoring Platform MONDAS Identifies Energy-Saving Potential

16.01.2017 | Trade Fair News

Designing Architecture with Solar Building Envelopes

16.01.2017 | Architecture and Construction

Sensory Stimuli Control Dopamine in the Brain

13.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>