Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How nanotechnology can advance regenerative medicine

04.11.2013
Nanotechnology may provide new strategies for regenerative medicine, including better tools to improve or restore damaged tissues, according to a review paper by Taiwanese researchers

Published in the journal Science and Technology of Advanced Materials, the paper summarizes the current state of knowledge on nanotechnology with application to stem cell biology. (The term “nanotechnology” refers to the design, construction, generation and use of nanoscale (1-100 nm) structures or materials.)

Stem cells are considered an important potential source for repairing damaged human tissues. Researchers have found that the adhesion, growth, and differentiation of stem cells are likely controlled by their surrounding microenvironment, which contains both chemical and physical cues. These cues include the “nanotopography” of the complex extracellular matrix or architecture that forms a network for human tissues.

In their review paper, Yang-Kao Wang and colleagues describe studies showing how this nanotopography (which includes nanosized pores, grooves, ridges, etc.) plays important roles in the behaviour and fate of stem cells. The authors also discuss the application of nanoparticles to stem cell isolation, tracking and imaging; how to translate nanotechnology from two to three dimensions; and the potential limitations of using nanomaterials in stem cell biology.

The paper concludes that “understanding [the] interactions of nanomaterials with stem cells may provide knowledge applicable to [the development of improved] cell-scaffold combinations in tissue engineering and regenerative medicine.”

For more information about this paper, please contact:

Yang-Kao Wang
GIBMTE, Taipei Medical University
250 Wuxing St., Xinyi Dist.
Taipei City 110, Taiwan
Email: humwang@tmu.edu.tw
Phone:886-2-27361661, ext 5200
Fax: 886-2-27395584
Media contacts:
National Institute for Materials Science, Tsukuba, Japan
Email: stam_office@nims.go.jp
Tel. +81-(0)29-859-2494
Journal information
Nanotechnology in the regulation of stem cell behavior. Sci Technol Adv Mater Vol. 14 (2013) p. 054401 DOI: http://dx.doi.org/10.1088/1468-6996/14/5/054401

Mikiko Tanifuji | EurekAlert!
Further information:
http://www.nims.go.jp

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>