Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New mutation identified, associated with better survival in lung cancer patients

12.09.2013
Japanese researchers have identified a mutation associated with a higher incidence of lung cancer in Japanese women who do not smoke, but better survival in lung cancer patients.

In a study published today in the journal PLOS ONE, the team from the RIKEN Center for Life Science Technologies shows that a single nucleotide polymorphism (SNP) in a gene that protects cells from oxidative stress is found four times more frequently in women than in men.

Lung cancer is the leading cause of cancer-related deaths in many industrialized countries. Most deaths are due to long-term exposure to cigarette smoke, but non-smokers account for 10—15% of cases.

Dr. Toshihisa Ishikawa and his team analyzed the DNA of patients with primary lung cancer and found that non-smoking Japanese women with two copies of a SNP (homozygous for this SNP) in the NFR2 gene had a markedly higher incidence of adenocarcinoma of the lung, as compared with non-smoking, homozygous males.

Furthermore, they find that both male and female lung cancer patients homozygous for the same SNP in the NRF2 gene survive lung cancer much better.

Nuclear factor erythroid-derived 2 (NF-E2)-related factor (NRF2) controls cellular adaptation to oxidants and electrophiles by inducing antioxidation and detoxification genes, and protects normal cells from external toxic challenges and oxidative stress.

Their study also suggests that lung cancer patients harboring a SNP (-617A) allele in the NRF2 gene in combination with the wild-type allele of the MDM2 gene have better prognosis.

“This is the first report providing clinical evidence that homozygous alleles for the SNP (-617A), one of the intrinsic genetic polymorphisms in the NRF2 gene, are associated with the overall survival of lung cancer patients,” explains Dr. Ishikawa.

“The study strongly suggests that the presence of homozygous alleles for this SNP is a good prognostic biomarker for the assessment of the overall survival chances of patients with adenocarcinoma, as well as a practical tool for personalized cancer therapy,” he concludes.

Dr Ishikawa is available for interviews by email or over the phone at:
Email: toshi-i@gsc.riken.jp
Tel: +81-45-503-9222
Media contact:
Juliette Savin
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-463-3687
Email: pr@riken.jp
About RIKEN
RIKEN is Japan's flagship research institute for basic and applied research. Over 2500 papers by RIKEN researchers are published every year in reputable scientific and technical journals, covering topics ranging across a broad spectrum of disciplines including physics, chemistry, biology, medical science and engineering. RIKEN's advanced research environment and strong emphasis on interdisciplinary collaboration has earned itself an unparalleled reputation for scientific excellence in Japan and around the world.

Website: www.riken.jp Find us on Twitter at @riken_en

About the Center for Life Science technologies
The RIKEN Center for Life Science Technologies aims to develop key technologies for breakthroughs in the medical and pharmaceutical applications of life science as well as conduct ground-breaking research and development for the next-generation life sciences.

Journal information

“SNP (-617C>A) in ARE-like loci of the NRF2 gene:
A new biomarker for prognosis of lung adenocarcinoma in Japanese non-smoking women” Okano et al. PLOS ONE, 2013, DOI: 10.1371/journal.pone.0073794

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>