Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multiple thought channels may help brain avoid traffic jams

07.05.2012
Brain networks may avoid traffic jams at their busiest intersections by communicating on different frequencies, researchers at Washington University School of Medicine in St. Louis, the University Medical Center at Hamburg-Eppendorf and the University of Tübingen have learned.

"Many neurological and psychiatric conditions are likely to involve problems with signaling in brain networks," says co-author Maurizio Corbetta, MD, the Norman J. Stupp Professor of Neurology at Washington University. "Examining the temporal structure of brain activity from this perspective may be especially helpful in understanding psychiatric conditions like depression and schizophrenia, where structural markers are scarce."

The research will be published May 6 in Nature Neuroscience.

Scientists usually study brain networks — areas of the brain that regularly work together — using magnetic resonance imaging, which tracks blood flow. They assume that an increase in blood flow to part of the brain indicates increased activity in the brain cells of that region.

"Magnetic resonance imaging is a useful tool, but it does have limitations," Corbetta says. "It only allows us to track brain cell activity indirectly, and it is unable to track activity that occurs at frequencies greater than 0.1 hertz, or once every 10 seconds. We know that some signals in the brain can cycle as high as 500 hertz, or 500 times per second."

For the new study, conducted at the University Medical Center at Hamburg-Eppendorf, the researchers used a technique called magnetoencephalography (MEG) to analyze brain activity in 43 healthy volunteers. MEG detects very small changes in magnetic fields in the brain that are caused by many cells being active at once. It can detect these signals at rates up to 100 hertz.

"We found that different brain networks ticked at different frequencies, like clocks ticking at different speeds," says lead author Joerg Hipp, PhD, of the University Medical Center at Hamburg-Eppendorf and the University of Tübingen, both in Germany.

For example, networks that included the hippocampus, a brain area critical for memory formation, tended to be active at frequencies around 5 hertz. Networks constituting areas involved in the senses and movement were active between 32 hertz and 45 hertz. Many other brain networks were active at frequencies between eight and 32 hertz. These "time-dependent" networks resemble different airline route maps, overlapping but each ticking at a different rate.

"There have been a number of fMRI studies of depression and schizophrenia showing 'spatial' changes in the organization of brain networks," Corbettta says. "MEG studies provide a window into a much richer 'temporal' structure. In the future, this might offer new diagnostic tests or ways to monitor the efficacy of interventions in these debilitating mental conditions."

Hipp JF, Hawellek DJ, Corbetta M, Siegel M, Engel AK. Large-scale cortical correlation structure of spontaneous oscillatory activity, Nature Neuroscience, May 6, 2012.

Funding from the European Union supported this research.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Diane Duke Williams | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>