Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multiple thought channels may help brain avoid traffic jams

07.05.2012
Brain networks may avoid traffic jams at their busiest intersections by communicating on different frequencies, researchers at Washington University School of Medicine in St. Louis, the University Medical Center at Hamburg-Eppendorf and the University of Tübingen have learned.

"Many neurological and psychiatric conditions are likely to involve problems with signaling in brain networks," says co-author Maurizio Corbetta, MD, the Norman J. Stupp Professor of Neurology at Washington University. "Examining the temporal structure of brain activity from this perspective may be especially helpful in understanding psychiatric conditions like depression and schizophrenia, where structural markers are scarce."

The research will be published May 6 in Nature Neuroscience.

Scientists usually study brain networks — areas of the brain that regularly work together — using magnetic resonance imaging, which tracks blood flow. They assume that an increase in blood flow to part of the brain indicates increased activity in the brain cells of that region.

"Magnetic resonance imaging is a useful tool, but it does have limitations," Corbetta says. "It only allows us to track brain cell activity indirectly, and it is unable to track activity that occurs at frequencies greater than 0.1 hertz, or once every 10 seconds. We know that some signals in the brain can cycle as high as 500 hertz, or 500 times per second."

For the new study, conducted at the University Medical Center at Hamburg-Eppendorf, the researchers used a technique called magnetoencephalography (MEG) to analyze brain activity in 43 healthy volunteers. MEG detects very small changes in magnetic fields in the brain that are caused by many cells being active at once. It can detect these signals at rates up to 100 hertz.

"We found that different brain networks ticked at different frequencies, like clocks ticking at different speeds," says lead author Joerg Hipp, PhD, of the University Medical Center at Hamburg-Eppendorf and the University of Tübingen, both in Germany.

For example, networks that included the hippocampus, a brain area critical for memory formation, tended to be active at frequencies around 5 hertz. Networks constituting areas involved in the senses and movement were active between 32 hertz and 45 hertz. Many other brain networks were active at frequencies between eight and 32 hertz. These "time-dependent" networks resemble different airline route maps, overlapping but each ticking at a different rate.

"There have been a number of fMRI studies of depression and schizophrenia showing 'spatial' changes in the organization of brain networks," Corbettta says. "MEG studies provide a window into a much richer 'temporal' structure. In the future, this might offer new diagnostic tests or ways to monitor the efficacy of interventions in these debilitating mental conditions."

Hipp JF, Hawellek DJ, Corbetta M, Siegel M, Engel AK. Large-scale cortical correlation structure of spontaneous oscillatory activity, Nature Neuroscience, May 6, 2012.

Funding from the European Union supported this research.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Diane Duke Williams | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>