Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multiple sclerosis appears to originate in different part of brain than long believed

11.09.2013
Rutgers professor's advanced analysis could let therapy start earlier and lead MS research in new directions

The search for the cause of multiple sclerosis, a debilitating disease that affects up to a half million people in the United States, has confounded researchers and medical professionals for generations.

But Steven Schutzer, a physician and scientist at Rutgers New Jersey Medical School, has now found an important clue why progress has been slow – it appears that most research on the origins of MS has focused on the wrong part of the brain.

Look more to the gray matter, the new findings published in the journal PLOS ONE suggest, and less to the white. That change of approach could give physicians effective tools to treat MS far earlier than ever before.

Until recently, most MS research has focused on the brain's white matter, which contains the nerve fibers. And for good reason: Symptoms of the disease, which include muscle weakness and vision loss, occur when there is deterioration of a fatty substance called myelin, which coats nerves contained in the white matter and acts as insulation for them. When myelin in the brain is degraded, apparently by the body's own immune system, and the nerve fiber is exposed, transmission of nerve impulses can be slowed or interrupted. So when patients' symptoms flare up, the white matter is where the action in the brain appears to be.

But Schutzer attacked the problem from a different direction. He is one of the first scientists to analyze patients' cerebrospinal fluid (CSF) by taking full advantage of a combination of technologies called proteomics and high-resolution mass spectrometry. "Proteins present in the clear liquid that bathes the central nervous system can be a window to physical changes that accompany neurological disease," says Schutzer, "and the latest mass spectrometry techniques allow us to see them as never before." In this study, he used that novel approach to compare the cerebrospinal fluid of newly diagnosed MS patients with that of longer term patients, as well as fluid taken from people with no signs of neurological disease.

What Schutzer found startled one of his co-investigators, Patricia K. Coyle of Stony Brook University in New York, one of the leading MS clinicians and researchers in the country. The proteins in the CSF of the new MS patients suggested physiological disruptions not only in the white matter of the brain where the myelin damage eventually shows up. They also pointed to substantial disruptions in the gray matter, a different part of the brain that contains the axons and dendrites and synapses that transfer signals between nerves.

Several scientists had in fact hypothesized that there might be gray matter involvement in early MS, but the technology needed to test their theories did not yet exist. Schutzer's analysis, which Coyle calls "exquisitely sensitive," provides the solid physical evidence for the very first time. It includes a finding that nine specific proteins associated with gray matter were far more abundant in patients who had just suffered their first attack than in longer term MS patients or in the healthy controls. "This evidence indicates gray matter may be the critical initial target in MS rather than white matter," says Coyle. "We may have been looking in the wrong area."

According to Coyle, that realization presents exciting possibilities. One, she says, is that patients who suffer attacks that appear related to MS could have their cerebrospinal fluid tested quickly. If proteins that point to early MS are found, helpful therapy could begin at once, before the disease can progress further.

Coyle says Schutzer's findings may also lead one day to more effective treatments for MS with far fewer side effects. Without specific knowledge of what causes multiple sclerosis, patients now need to take medications that can broadly weaken their immune systems. These drugs slow the body's destruction of myelin in the brain, but also degrade the immune system's ability to keep the body healthy in other ways. By suggesting an exciting new direction for MS research, Schutzer and his team may have set the stage for more targeted treatments that attack MS while preserving other important immune functions.

Schutzer sees an even broader future for the work he is now doing. He also has used advanced analysis of cerebrospinal fluid to identify physical markers for neurological ailments that include Lyme disease, in which he has been a world leader in research for many years, as well as chronic fatigue syndrome. He says, "When techniques are refined, more medical conditions are examined, and costs per patient come down, one day there could be a broad panel of tests through which patients and their doctors can get early evidence of a variety of disorders, and use that knowledge to treat them both more quickly and far more effectively than is possible now."

This research was funded by the National Institutes of Health.

Rob Forman | EurekAlert!
Further information:
http://www.rutgers.edu

More articles from Health and Medicine:

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

nachricht Chronic stress induces fatal organ dysfunctions via a new neural circuit
21.08.2017 | Hokkaido University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Molecular volume control

22.08.2017 | Life Sciences

When fish swim in the holodeck

22.08.2017 | Life Sciences

Biochemical 'fingerprints' reveal diabetes progression

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>