Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MSU scientists set sights on glaucoma medication to treat TB

24.07.2015

A new discovery by Michigan State University scientists suggests that a common medication used to treat glaucoma could also be used to treat tuberculosis, even the drug-resistant kind.

Robert Abramovitch, an MSU microbiologist, along with graduate student Benjamin Johnson who helped lead the study, have discovered that ethoxzolamide, a sulfa-based compound found in many prescription glaucoma drugs, actually turns off the bacterium's ability to invade the immune system.


MSU's Robert Abramovitch developed a biosensor that glows green in response to conditions that mimic TB infection.

Credit: MSU photo

The research paper is in the current issue of Antimicrobial Agents and Chemotherapy.

"Basically, ethoxzolamide stops TB from deploying its weapons...shutting down its ability to grow inside certain white blood cells in the immune system," Abramovitch said. "We found the compound reduces disease symptoms in mice."

... more about:
»MSU »TB »bacteria »bacterium »drugs »glaucoma »immune system

According to Abramovitch, TB may not have eyes and ears, but it has the uncanny ability to sense certain environmental cues in the body and adapt. One of these cues includes the infection's ability to detect pH - or acidity levels - which tells the disease it's being attacked by a host immune cell.

"The compound we found inhibits TB's ability to detect acidic environments, effectively blindfolding the bacterium so it can't resist the immune system's assault," Abramovitch said.

It's estimated that 2 billion people, globally, carry the infection, but in most cases it lies dormant and the immune system is able to prevent it from spreading in the body.

"It's a standoff however," he said. "The immune system has difficulty clearing the infection and the TB bacterium is just waiting for the immune system to weaken."

Abramovitch and his research team screened 273,000 different compounds in hopes of finding one that could possibly stop the disease. By using a synthetic biosensor that glows green in response to conditions that mimic TB infection, something he developed earlier in his research, he eventually found the needle in the haystack that turned the bacterium's sensing ability off.

Yet, this elusive compound not only has the potential of preventing the disease from spreading, but Abramovitch suggests that it could help shorten the length of treatment and slow the emergence of drug resistance, particularly if found to work in conjunction with other existing TB drugs. Current treatments can last up to six months.

"The single biggest reason for the evolution of drug-resistant strains is the long course of treatment," Abramovitch said. "It's difficult for a patient to complete the entire antibiotic course required to kill all of the bacteria. Shortening the duration will help slow the development of these resistant strains."

Trying to kill TB bacteria isn't the only way of stopping the disease though, Abramovitch added.

"We don't necessarily have to find drugs that kill TB, we just need to find ones that interfere with the bug's ability to sense and resist the immune system. By giving the immune system a helping hand, natural defenses can then kill the bacteria."

###

His research has been funded through the National Institutes of Health, MSU startup funds, AgBioResearch and the Jean P. Schultz Biomedical Research Fund.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

Sarina Gleason | EurekAlert!

Further reports about: MSU TB bacteria bacterium drugs glaucoma immune system

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>