Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MSU scientists set sights on glaucoma medication to treat TB

24.07.2015

A new discovery by Michigan State University scientists suggests that a common medication used to treat glaucoma could also be used to treat tuberculosis, even the drug-resistant kind.

Robert Abramovitch, an MSU microbiologist, along with graduate student Benjamin Johnson who helped lead the study, have discovered that ethoxzolamide, a sulfa-based compound found in many prescription glaucoma drugs, actually turns off the bacterium's ability to invade the immune system.


MSU's Robert Abramovitch developed a biosensor that glows green in response to conditions that mimic TB infection.

Credit: MSU photo

The research paper is in the current issue of Antimicrobial Agents and Chemotherapy.

"Basically, ethoxzolamide stops TB from deploying its weapons...shutting down its ability to grow inside certain white blood cells in the immune system," Abramovitch said. "We found the compound reduces disease symptoms in mice."

... more about:
»MSU »TB »bacteria »bacterium »drugs »glaucoma »immune system

According to Abramovitch, TB may not have eyes and ears, but it has the uncanny ability to sense certain environmental cues in the body and adapt. One of these cues includes the infection's ability to detect pH - or acidity levels - which tells the disease it's being attacked by a host immune cell.

"The compound we found inhibits TB's ability to detect acidic environments, effectively blindfolding the bacterium so it can't resist the immune system's assault," Abramovitch said.

It's estimated that 2 billion people, globally, carry the infection, but in most cases it lies dormant and the immune system is able to prevent it from spreading in the body.

"It's a standoff however," he said. "The immune system has difficulty clearing the infection and the TB bacterium is just waiting for the immune system to weaken."

Abramovitch and his research team screened 273,000 different compounds in hopes of finding one that could possibly stop the disease. By using a synthetic biosensor that glows green in response to conditions that mimic TB infection, something he developed earlier in his research, he eventually found the needle in the haystack that turned the bacterium's sensing ability off.

Yet, this elusive compound not only has the potential of preventing the disease from spreading, but Abramovitch suggests that it could help shorten the length of treatment and slow the emergence of drug resistance, particularly if found to work in conjunction with other existing TB drugs. Current treatments can last up to six months.

"The single biggest reason for the evolution of drug-resistant strains is the long course of treatment," Abramovitch said. "It's difficult for a patient to complete the entire antibiotic course required to kill all of the bacteria. Shortening the duration will help slow the development of these resistant strains."

Trying to kill TB bacteria isn't the only way of stopping the disease though, Abramovitch added.

"We don't necessarily have to find drugs that kill TB, we just need to find ones that interfere with the bug's ability to sense and resist the immune system. By giving the immune system a helping hand, natural defenses can then kill the bacteria."

###

His research has been funded through the National Institutes of Health, MSU startup funds, AgBioResearch and the Jean P. Schultz Biomedical Research Fund.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

Sarina Gleason | EurekAlert!

Further reports about: MSU TB bacteria bacterium drugs glaucoma immune system

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>