Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Everything in moderation: excessive nerve cell pruning leads to disease

Mechanism meant to maintain efficiency of brain network involved in neurodegenerative disease

Scientists at the Montreal Neurological Institute and Hospital-The Neuro, McGill University, have made important discoveries about a cellular process that occurs during normal brain development and may play an important role in neurodegenerative diseases.

The study’s findings, published in Cell Reports, a leading scientific journal, point to new pathways and targets for novel therapies for Alzheimer’s, Parkinson’s, ALS and other neurodegenerative diseases that affect millions of people world-wide.

Research into neurodegenerative disease has traditionally concentrated on the death of nerve cell bodies. However, it is now certain that in most cases that nerve cell body death represents the final event of an extended disease process. Studies have shown that protecting cell bodies from death has no impact on disease progression whereas blocking preceding axon breakdown has a significant benefit. The new study by researchers at The Neuro shifts the focus to the loss or degeneration of axons, the nerve-cell ‘branches’ that receive and distribute neurochemical signals among neurons.

During early development, axons are pruned to ensure normal growth of the nervous system. Emerging evidence suggests that this pruning process becomes reactivated in neurodegenerative disease, leading to the aberrant loss of axons and dendrites. Axonal pruning in development is significantly influenced by proteins called caspases. “The idea that caspases are even involved in axonal degeneration during development is very recent” said Dr. Philip Barker, a principal investigator at The Neuro and senior author of the study.

Dr. Barker and his colleagues show that the activity of certain ’executioner’ caspases (caspase-3 and caspase-9) induce axonal degeneration and that their action is suppressed by a protein termed XIAP (X-linked inhibitor of apoptosis). “We found that caspase-3- and -9 play crucial roles in axonal degeneration and that their activities are regulated by XIAP. XIAP acts as a brake on caspase activity and must be removed for degeneration to proceed” added Dr. Barker.

This balancing act between caspases and XIAP ensure that caspases do not cause unnecessary or excessive destruction. However, this balance may shift during neurodegenerative disease. “If we understand the pathways that regulate XIAP levels, we may be able to develop therapies that reduce caspase-dependent degeneration during neurodegenerative disease”.

Contact: Anita Kar, Communications Officer, The Neuro (514) 398-3376 or

The Neuro

The Montreal Neurological Institute and Hospital — The Neuro, is a unique academic medical centre dedicated to neuroscience. Founded in 1934 by the renowned Dr. Wilder Penfield, the Neuro is recognized internationally for integrating research, compassionate patient care and advanced training, all key to advances in science and medicine. The Neuro is a research and teaching institute of McGill University and forms the basis for the Neuroscience Mission of the McGill University Health Centre. Neuro researchers are world leaders in cellular and molecular neuroscience, brain imaging, cognitive neuroscience and the study and treatment of epilepsy, multiple sclerosis and neuromuscular disorders. For more information, visit

Anita Kar | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>