Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Missing sugar molecule raises diabetes risk in humans

25.02.2011
Researchers at the University of California, San Diego School of Medicine and Rady Children's Hospital-San Diego say an evolutionary gene mutation that occurred in human millions of years ago and our subsequent inability to produce a specific kind of sugar molecule appears to make people more vulnerable to developing type 2 diabetes, especially if they're overweight.

The findings are published in the Feb. 24 online edition of The FASEB Journal, a publication of the Federation of American Societies of Experimental Biology.

Corresponding study author, Jane J. Kim is an assistant professor in the UCSD Department of Pediatrics and a member of the Pediatric Diabetes Research Center and Rady Children's Hospital-San Diego, a research and teaching affiliate of the UCSD School of Medicine. Kim said the findings represent the first documented evidence linking the sugar production to insulin and glucose metabolism problems associated with diabetes.

"It opens up a new perspective in understanding the causes of diabetes," said Kim. "Given the global epidemic of obesity and diabetes, we think that these findings suggest that evolutionary changes may have influenced our metabolism and perhaps increased our risk of the disease."

Type 2 diabetes is caused by both genetic and environmental factors, such as a fatty diet and lack of exercise, that result in progressively dysfunctional pancreatic beta cells, elevated blood sugar levels due to insulin resistance and eventual health complications, sometimes fatally so. Diabetes is an expanding problem, nationally and globally. In the United States, more than 25 million adults and children – almost nine percent of the population – have diabetes, according to the American Diabetes Association. Another 79 million Americans are estimated to be prediabetic. Worldwide, roughly 285 million people are believed to have the disease.

Sialic acids are sugar molecules found on the surfaces of all animal cells, where they act as vital contact points for interaction with other cells and with their surrounding environment. Virtually all mammals produce two types: N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc).

Humans are the exception. For reasons lost in the mists of evolution, a mutation in a gene called CMAH occurred 2 to 3 million years ago, inactivating an enzyme in humans that catalyzes production of Neu5Gc by adding a single oxygen atom to Neu5Ac.

Researchers compared two groups of mice: one with a functional CMAH gene, the other with an altered CMAH gene similar to the human mutation. Both groups of mice were fed a high-fat diet. Mice in both groups became obese and developed insulin resistance. However, only mice with the CMAH gene mutation experienced pancreatic beta cell failure – the cells that make and release insulin, a hormone that controls blood sugar levels.

Kim said the findings help refine understanding of why obese humans appear to be particularly vulnerable to type 2 diabetes, and also suggest that current animal models used to study diabetes may not accurately mirror the human condition. In clinical terms, she said further research to determine how sialic acid composition affects pancreatic beta cell function may reveal new strategies to preserve the cells, improve insulin production and prevent diabetes.

Co-authors of the study are Sarah Kavaler and Alice Jih, UCSD Department of Pediatrics and Rady Children's Hospital-San Diego; Hidetaka Morinaga and WuQuiang Fan, UCSD Department of Medicine; Maria Hedlund and Ajit Varki, UCSD departments of Medicine, Cellular and Molecular Medicine and UCSD Glycobiology Research and Training Center.

Funding support was provided by the National Institutes of Health.

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: CMAH Medicine Neu5Ac Pediatric UCSD blood sugar evolutionary change insulin resistance

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>