Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MicroRNA that blocks bone destruction could offer new therapeutic target for osteoporosis

26.06.2014

UT Southwestern cancer researchers have identified a promising molecule that blocks bone destruction and, therefore, could provide a potential therapeutic target for osteoporosis and bone metastases of cancer.

The molecule, miR-34a, belongs to a family of small molecules called microRNAs (miRNAs) that serve as brakes to help regulate how much of a protein is made, which in turn, determines how cells respond.


This image depicts Dr. Yihong Wan

Credit: UT Southwestern

UT Southwestern researchers found that mice with higher than normal levels of miR-34a had increased bone mass and reduced bone breakdown. This outcome is achieved because miR-34a blocks the development of bone-destroying cells called osteoclasts, which make the bone less dense and prone to fracture.

"This new finding may lead to the development of miR-34a mimics as a new and better treatment for osteoporosis and cancers that metastasize to the bone," said senior author Dr. Yihong Wan, Assistant Professor of Pharmacology and member of the UT Southwestern Harold C. Simmons Cancer Center.

Her team found that injecting nanoparticles containing an artificial version, or mimic, of miR-34a into a mouse with post-menopausal osteoporosis decreased  bone loss. "Interestingly, the mouse miR-34a is identical to that in humans, which means that our findings may apply to humans as well," said Dr. Wan, Virginia Murchison Linthicum Scholar in Medical Research at UT Southwestern.

The study is published online in the journal Nature.

High levels of bone destruction and reduced bone density caused by excessive osteoclasts are characteristic of osteoporosis, a common bone disease in which bones become fragile and susceptible to fracture. This condition disproportionately affects seniors and women, and leads to more than 1.5 million fractures annually.

miR-34a could have an additional therapeutic application, offering protection from bone metastases in a variety of cancers, Dr. Wan noted. Bone metastases happen when cancer cells travel from the primary tumor site to the bone, establishing a new cancer location. Researchers saw that injecting the miR-34a mimic in mice could prevent the metastasis of breast and skin cancer cells specifically to bone, mainly by disarming the metastatic niche in bone.

Co-author Dr. Joshua Mendell, Professor of Molecular Biology at UT Southwestern and member of the UT Southwestern Harold C. Simmons Cancer Center, noted that his laboratory previously showed that miR-34a can directly suppress the growth of cancer cells.

 "We were very excited to see, through this collaborative work with Dr. Wan's group, that miR-34a can also suppress bone metastasis.  Thus, miR-34a-based therapy could provide multiple benefits for cancer patients," said Dr. Mendell, CPRIT Scholar in Cancer Research. CPRIT is the Cancer Prevention and Research Institute of Texas, which provides voter-approved state funds for groundbreaking cancer research and prevention programs and services in Texas.

###

Other UT Southwestern researchers involved include Dr. Xian-Jin Xie, Associate Professor of Clinical Sciences and a member of the Harold C. Simmons Cancer Center; Dr. Tsung-Cheng Chang, Assistant Professor of Molecular Biology; and postdoctoral researchers Jing Y. Krzeszinski (lead author), Wei Wei, HoangDinh Huynh, Zixue Jin, and Xunde Wang. The work was carried out in collaboration with Lin He from the University of California at Berkeley, and Lingegowda Mangala, Gabriel Lopez-Berestein and Anil Sood from UT MD Anderson Cancer Center.

UT Southwestern's Harold C. Simmons Cancer Center is the only National Cancer Institute-designated cancer center in North Texas and one of just 66 NCI-designated cancer centers in the nation. It includes 13 major cancer care programs with a focus on treating the whole patient with innovative treatments, while fostering groundbreaking basic research that has the potential to improve patient care and prevention of cancer worldwide. In addition, the Center's education and training programs support and develop the next generation of cancer researchers and clinicians.

About UT Southwestern Medical Center

UT Southwestern, one of the premier academic medical centers in the nation, integrates pioneering biomedical research with exceptional clinical care and education. The institution's faculty includes many distinguished members, including six who have been awarded Nobel Prizes since 1985. Numbering more than 2,700, the faculty is responsible for groundbreaking medical advances and is committed to translating science-driven research quickly to new clinical treatments. UT Southwestern physicians provide medical care in 40 specialties to nearly 91,000 hospitalized patients and oversee more than 2 million outpatient visits a year.

Russell Rian | Eurek Alert!

Further reports about: Biology Cancer MicroRNA fracture levels miR-34a osteoclasts osteoporosis therapeutic treatments

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>