Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Of Mice and Peanuts: A new mouse model for peanut allergy

Chicago researchers report the development of a new mouse model for food allergy that mimics symptoms generated during a human allergic reaction to peanuts.

The animal model provides a new research tool that will be invaluable in furthering the understanding of the causes of peanut and other food allergies and in finding new ways to treat and prevent their occurrence, according to experts at the National Institute of Allergy and Infectious Diseases (NIAID), the component of the National Institutes of Health (NIH) that funded the research.

Peanut allergy is of great public health interest because this food allergy is the one most often associated with life-threatening allergic reactions, resulting in up to 100 deaths in the United States each year.

The findings of the research team, led by Paul Bryce, Ph.D., of the Feinberg School of Medicine at Northwestern University, appear in the January issue of the Journal of Allergy and Clinical Immunology. The development of new animal models for food allergy was identified as a critical need by the 2006 NIH Expert Panel on Food Allergy Research.

"Food allergies affect the health and quality of life of many Americans, particularly young children," says NIAID Director Anthony S. Fauci, M.D. "Finding an animal model that mimics a severe human allergic reaction to peanuts will help us better understand peanut allergy and develop new and improved treatment and prevention strategies."

Allergic reactions to food can range from mild hives to vomiting to difficulty breathing to anaphylaxis, the most severe reaction. Anaphylaxis may result from a whole-body allergic reaction to the release of the chemical histamine, causing muscles to contract, blood vessels to dilate and fluid to leak from the bloodstream into the tissues. These effects can result in narrowing of the upper or lower airways, low blood pressure, shock or a combination of these symptoms, and also can lead to a loss of consciousness and even death.

The most significant obstacle to developing an animal model of food allergy is that animals are not normally allergic to food. Scientists must add a strong immune stimulant to foods to elicit a reaction in animals that resembles food allergy in humans. Because of this requirement, useful animal models have been developed only in the last few years, and such animal models have until now used cholera toxin as the immune stimulant.

Dr. Bryce's team took the novel approach of feeding mice a mixture of whole peanut extract (WPE) and a toxin from the bacteria Staphylococcus aureus, called staphylococcal enterotoxin B (SEB) to simulate the human anaphylactic reaction to peanuts in mice.

"Persistent S. aureus colonization is commonly found on the skin of people with eczema and in the nasal cavities of people with sinusitis," says Dr. Bryce. "The history between S. aureus and allergic diseases led us to use staphylococcal toxins to stimulate food allergy in animals."

According to Dr. Bryce, the results using the SEB/WPE mixture were considerably better than those seen with previous animal models, which failed to mimic many features of food allergy. They showed that the SEB/WPE mixture stimulated severe symptoms in mice that closely resemble those found in human anaphylaxis, including swelling around the eyes and mouth, reduced movement and significant problems breathing. Additionally, mice given the SEB/WPE mixture had high blood levels of histamine, which indicates a severe allergic reaction.

The researchers also observed that the blood and tissues of mice in the SEB/WPE group had higher-than-normal numbers of eosinophils, which are white blood cells often associated with allergy-related inflammation. Future studies will be needed to determine if eosinophils play an important role in human food allergy.

These results, say Dr. Bryce, suggest that this animal model of food allergy will be useful for many types of future research studies.

Approximately 4 percent of Americans have food allergies. For reasons that are not well understood, the prevalence in children increased by 18 percent between 1997 and 2007. The most common causes of food allergies are milk, eggs, shellfish, peanuts, tree nuts, wheat and soy.

Each year there are between 15,000 and 30,000 episodes of food-induced anaphylaxis, which are associated with 100 to 200 deaths in the United States.

Julie Wu | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>