Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Towards medical treatments using cell level control

01.11.2012
Researchers at Tokyo Institute of Technology and the Weizmann Institute of Science identify a means of controlling biological processes that could help treatments for immune disease, neurological disorders and cancer.
Researchers at Tokyo Institute of Technology and the Weizmann Institute of Science identify a means of controlling biological processes that could help treatments for immune disease, neurological disorders and cancer.

The cellular response to a number of signals including inflammatory cytokines, tumor promoters, carcinogens, and chemotherapeutic agents hinge on the transcription factor NF-êB. Rivka Dikstein and colleagues at Tokyo Institute of Technology in Japan and the Weizmann Institute of Science in Israel identify how the protein DSIF controls NF-êB activity. The research may lead to methods for controlling inflammation, and immune responses, as well as the cell cycle processes that can lead to cancer.
Activity of NF-êB is usually transient because some of the gene products function as negative regulators of NF-êB, resulting in a negative feedback loop (Figure 1). This is desirable because persistent activation of NF-êB can lead to various pathogenic conditions such as chronic inflammation, autoimmune diseases, and cancer.

Dikstein and colleagues treated cells to reduce the expression of DSIF and monitored the effect on protein levels of NF-êB’s target genes. They found that in the treated ‘DSIF knockdown’ cells the levels of these proteins failed to recover following a degradation process. Further investigation revealed that DSIF plays an integral role in the maturation and transport of messenger RNAs (Figure 2).

“The unique control of the negative feedback regulator genes by DSIF may be utilized by cells under circumstances in which prolonged NF-êB activity is needed,” explain the authors. Their future studies will focus on DSIF under specific settings with a view to identifying drug targets for selective manipulation of NF-êB activity.

BACKGROUND

NF-êB induces gene expression responsible for a number of biological processes including inflammation and cell survival. Its deregulation is linked to chronic inflammation and cancer but so far the mechanisms behind these processes have not been fully understood.

Nuclear transport is integral to NF-êB activity. In unstimulated cells it is retained inactive in the cytoplasm. Signals that trigger its activation result in its transport into the nucleus where it activates responsive genes, such as A20 and IêBá.

Figure 1. Negative feedback regulation of inflammatory responses. The transcription factor NF-êB activates transcription of its target genes, such as A20 and IêBá. Products of these genes function as negative regulators of NF-êB and limit the duration of its activation. This is desirable because persistent activation of NF-êB can lead to various pathogenic conditions such as chronic inflammation, autoimmune diseases, and cancer.


Figure 2. The role of DSIF in the control of inflammatory responses. Upon NF-êB activation, DSIF is recruited to the A20 and IêBá genes and contributes to the negative feedback regulation in a unique manner. DSIF facilitates the expression of these genes by stimulating capping, splicing, and export of their mRNAs. Otherwise, these steps are rate-limiting, and A20 and IêBá proteins are not synthesized successfully.

Activity of NF-êB is usually transient because products of these genes function as negative regulators of NF-êB, resulting in a negative feedback and limiting the duration of NF-êB activation (Figure 1). In certain diseases NF-êB activation becomes persistent, perhaps due to an interruption of this feedback loop.

NF-êB activation results in recruitment of the protein DSIF at the target genes A20 and IêBá. The researchers confirmed the role of DSIF in the negative feedback regulation of NF-êB activity by downregulating a protein subunit of DSIF and comparing the treated cells with controls. In untreated cells the levels of proteins for the target genes A20 and IêBá are high. Although the levels diminish significantly in 30 minutes following a process called TNF-á induction, which is caused by degradation of the proteins, within 2 hours the levels recover. In knockdown cells, however, the levels remained diminished 2 hours after TNF-á induction.

Further investigations using chromatin immunoprecipitation assays revealed abnormalities in the synthesis of A20 and IêBá proteins in the knock down cells. A significant portion of the A20 and IêBá mRNAs in the knockdown cells were uncapped and unspliced (Fig. 2).

The researchers also studied how export was affected in DSIF knockdown cells. Export of mature mRNAs from the nucleus to the cytoplasm is a highly regulated process incorporating quality assurance checks. The researchers prepared RNA from cytosolic and nuclear cell fractions for comparison. In knockdown cells following TNF-á induction, the nuclear fractions had much larger amounts of A20 and IêBá than the cytosolic fractions, suggesting accumulation in the nucleus.

The impact observed on the synthesis and export of A20 and IêBá in DSIF knockdown cells was striking. A20 and IêBá are also responsible for regulating other cell signalling processes and it is likely that the effects on associated signalling processes contribute to the overall impact of DSIF knockdown.

As the authors point out, diminished DSIF activity could contribute to pathological states in which NF-êB becomes constitutively active, such as inflammatory and autoimmune diseases, neurological disorders, and cancer. Further work on DSIF activity could help develop new approaches to treating these diseases.

Acknowledgments
These results were conducted as part of the JST's PRESTO project, "Epigenetic control and biological functions" (Research Supervisor: Dr. Tsunehiro Mukai, professor emeritus, Saga University).
Further information:
Yukiko Tokida
Center for Public Information, Tokyo Institute of Technology
2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
E-mail: kouhou@jim.titech.ac.jp
URL: http://www.titech.ac.jp/english/
Tel: +81-3-5734-2975
Fax: +81-3-5734-3661

About Tokyo Institute of Technology
As one of Japan’s top universities, Tokyo Institute of Technology seeks to contribute to civilization, peace and prosperity in the world, and aims at developing global human capabilities par excellence through pioneering research and education in science and technology, including industrial and social management. To achieve this mission, we have an eye on educating highly moral students to acquire not only scientific expertise but also expertise in the liberal arts, and a balanced knowledge of the social sciences and humanities, all while researching deeply from basics to practice with academic mastery. Through these activities, we wish to contribute to global sustainability of the natural world and the support of human life.
Associated links
http://www.titech.ac.jp/english/
Journal information
Gil Diamant, Liat Amir-Zilberstein, Yuki Yamaguchi, Hiroshi Handa, and Rivka Dikstein, “DSIF restricts NFêB signaling by coordinating elongation with mRNA processing of negative feedback genes” , Cell Reports, 2, (4), pp.722­731, (2012)

DOI: 10.1016/j.celrep.2012.08.041.

Adarsh Sandhu | Research asia research news
Further information:
http://www.titech.ac.jp/english/
http://www.researchsea.com

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>