Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanisms Regulating Inflammation Associated with Type 2 Diabetes, Cancer Identified

01.03.2013
A study led by researchers at Boston University School of Medicine (BUSM) has identified epigenetic mechanisms that connect a variety of diseases associated with inflammation.
Utilizing molecular analyses of gene expression in macrophages, which are cells largely responsible for inflammation, researchers have shown that inhibiting a defined group of proteins could help decrease the inflammatory response associated with diseases such as obesity, type 2 diabetes, cancer and sepsis.

The study, which is published online in the Journal of Immunology, was led by first author Anna C. Belkina, MD, PhD, a researcher in the department of microbiology at BUSM, and senior author Gerald V. Denis, PhD, associate professor of pharmacology and medicine at BUSM.

Epigenetics is an emerging field of study exploring how genetically identical cells express their genes differently, resulting in different phenotypes, due to mechanisms other than DNA sequence changes.

Previous studies have shown that a gene, called Brd2, is associated with high insulin production and excessive adipose (fat) tissue expansion that drives obesity when Brd2 levels are low and cancer when Brd2 levels are high. The Brd2 gene is a member of the Bromodomain Extra Terminal (BET) family of proteins and is closely related to Brd4, which is important in highly lethal carcinomas in young people, as well as in the replication of Human Immunodeficiency Virus (HIV).

The BET family proteins control gene expression epigenetically by acting on chromatin, the packaging material for genes, rather than on DNA directly. This mechanism of action is being explored because the interactions are not reflected in genome sequencing information or captured through DNA-based genetic analysis. In addition, this layer of gene regulation has recently been shown to be a potential target in the development of novel epigenetic drugs that could target several diseases at once.

The study results show that proteins in the BET family have a strong influence on the production of pro-inflammatory cytokines in macrophages. This indicates that the defined family of proteins govern many aspects of acute inflammatory diseases, such as type 2 diabetes, sepsis and cardiovascular disease, among others, and that they should be explored as a potential target to treat a wide variety of diseases.

“Our study suggests that it is not a coincidence that patients with diabetes experience higher risk of death from cancer, or that patients with chronic inflammatory diseases, such as atherosclerosis and insulin resistance, also are more likely to be obese or suffer from inflammatory complications,” said Belkina. “This requires us to think of diverse diseases of different organs as much more closely related than our current division of medical specialties allows.”

Future research should explore how to successfully and safely target and inhibit these proteins in order to stop the inflammatory response associated with a variety of diseases.

Research included in this press release was supported in part by the National Institutes of Health’s National Institute of Diabetes, Digestive and Kidney Diseases under grant award R56 DK090455 (Principal Investigator: Denis).

Jenny Eriksen Leary | EurekAlert!
Further information:
http://www.bmc.org

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>