Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mechanism of breathing muscle 'paralysis' in dreaming sleep identified

A novel brain mechanism mediating the inhibition of the critical breathing muscles during rapid eye movement (REM) sleep has been identified for the first time in a new study, offering the possibility of a new treatment target for sleep-related breathing problems.

The findings were published online ahead of print publication in the American Thoracic Society's American Journal of Respiratory and Critical Care Medicine.

"REM sleep is accompanied by profound inhibition of muscle activity," said researcher Richard Horner, PhD, professor of medicine and physiology at the University of Toronto This "paralysis" affects breathing muscles and "is a cause of snoring and other breathing problems in sleep, especially obstructive sleep apnea."

Sleep apnea is a common and serious problem that increases the risk for heart attacks, high blood pressure, stroke, diabetes and daytime sleepiness.

According to Dr. Horner, "the brain mechanism mediating inhibition of the critical breathing muscles in REM sleep was unknown, but a novel and powerful inhibitory mechanism is identified for the first time in our study."

In the study, performed by PhD student Kevin Grace, rats were studied across sleep-wake states. The researchers targeted manipulation of the brain region that controls tongue muscles during sleep.

The tongue is an important breathing muscle because its activity keeps the airspace open behind the tongue to allow for the effective passage of air into the lungs. Inhibition of tongue muscle activity in sleep in some people leads to backward movement of the tongue and blockage of the airspace. This blockage in sleep leads to episodes of self-suffocation (sleep apnea) that are rescued by waking up from sleep. Such episodes can occur hundreds of times a night.

Importantly, the muscle activating effects of these interventions were largest during REM sleep and minimal or absent in other sleep-wake states. The brain chemical mediating this powerful inhibition of breathing muscle activity in REM sleep is acetylcholine, acting via muscarinic receptors that are functionally linked to a particular class of potassium channel.

"Since REM sleep recruits mechanisms that can abolish or suppress tongue muscle activity during periods of REM sleep and cause obstructive sleep apnea, identification of a mechanism mediating this inhibition is a significant discovery," said Dr. Horner.

"This newly identified process has fundamental implications for understanding the common and serious problems of snoring and other breathing problems such as obstructive sleep apnea, which are worse in REM sleep," said Dr. Horner. "Moreover, identifying the fundamental mechanism responsible for the shutting down of a muscle in sleep that is critical for effective breathing also identifies a rational drug target designed to prevent this inactivity and so prevent obstructive sleep apnea and other sleep-related breathing problems."

About the American Journal of Respiratory and Critical Care Medicine:

With an impact factor of 11.080, the AJRRCM is a peer-reviewed journal published by the American Thoracic Society. It aims to publish the most innovative science and the highest quality reviews, practice guidelines and statements in the pulmonary, critical care and sleep-related fields.

Founded in 1905, the American Thoracic Society is the world's leading medical association dedicated to advancing pulmonary, critical care and sleep medicine. The Society's 15,000 members prevent and fight respiratory disease around the globe through research, education, patient care and advocacy.

Nathaniel Dunford | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

Advanced analysis of brain structure shape may track progression to Alzheimer's disease

26.10.2016 | Health and Medicine

More VideoLinks >>>