Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanical tissue resuscitation technology shows promise

17.04.2012
Wake Forest Baptist Medical Center researchers seeking a successful treatment for traumatic brain injury have found that the size and extent of damaged tissue can be reduced by using a new device to prevent cell death.

The research, the focus of a three-year, $1.5 million study funded by the Department of Defense, was recently published in the journal Neurosurgery. The technology, tested in rats, is called mechanical tissue resuscitation (MTR) and uses negative pressure to create an environment that fosters cell survival.

Louis C. Argenta, M.D., and Michael Morykwas, Ph.D., professors in the Department of Plastic Surgery and Reconstructive Surgery, and a multidisciplinary team of colleagues at Wake Forest Baptist, have more than 15 years of experience working with negative pressure devices to successfully treat wounds and burns. In this study, the team used MTR to remove fluid and other toxins that cause cell death from an injury site deep in the brain.

When the brain is injured by blunt force, explosion or other trauma, the cells at the impact site are irreversibly damaged and die. In the area surrounding the wound, injured cells release toxic substances that cause the brain to swell and restrict blood flow and oxygen levels. This process results in more extensive cell death which affects brain function. Argenta and his team targeted these injured brain cells to determine if removing the fluid and toxic substances that lead to cell death could help improve survival of the damaged cells.

In the study, a bioengineered material matrix was placed directly on the injured area in the brain and attached to a flexible tube connected to a microcomputer vacuum pump. The pump delivered a carefully controlled vacuum to the injured brain for 72 hours drawing fluid from the injury site.

The brain injuries treated with the device showed a significant decrease in brain swelling and release of toxic substances when compared to untreated injuries. Brains treated with the device showed that over 50% more brain tissue could be preserved compared to nontreated animals. Behavioral function tests demonstrated that function was returned faster in the MTR treated group.

"We have been very gratified by the results thus far. This study demonstrates that by working together a multidisciplinary group of researchers can develop new technology that could be used one day at the hospital bedside," said Argenta.

The researchers are now studying the same technology in stroke and brain hemorrhage models.

"The Department of Defense has identified this as an area that is ripe for medical advancement," said study co-author Stephen B. Tatter, MD, Ph.D., professor of neurosurgery at Wake Forest Baptist Medical Center. "We believe it will soon be ready for a clinical trial."

Co-authors on this study are Zhenlin Zheng, Ph.D., and Allyson Bryant, M.D., Department of Plastic Surgery and Reconstructive Surgery.

Paula Faria | EurekAlert!
Further information:
http://www.wakehealth.edu

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New bioimaging technique is fast and economical

21.08.2017 | Medical Engineering

Silk could improve sensitivity, flexibility of wearable body sensors

21.08.2017 | Materials Sciences

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>