Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mayo Clinic IDs immune system glitch tied to fourfold higher likelihood of death

High levels of antibody molecule linked to increased rates of death from all diseases

Mayo Clinic researchers have identified an immune system deficiency whose presence shows someone is up to four times likelier to die than a person without it. The glitch involves an antibody molecule called a free light chain; people whose immune systems produce too much of the molecule are far more likely to die of a life-threatening illness such as cancer, diabetes and cardiac and respiratory disease than those whose bodies make normal levels. The study is published in the June issue of Mayo Clinic Proceedings.

Researchers studied blood samples from nearly 16,000 people 50 and older enrolled in a population-based study of plasma cell disorders in Olmsted County, Minn. They found that those who had the highest level of free light chains -- the top 10 percent -- were about four times more at risk of dying than those with lower levels. Even after accounting for differences in age, gender and kidney function, the risk of death was roughly twice as high.

The study suggests that high levels of free light chains are markers of increased immune system response to infection, inflammation or some other serious disorders, says lead researcher Vincent Rajkumar, M.D., a Mayo Clinic hematologist.

Researchers have known that high levels of free light chains are associated with increased risk of death among patients with plasma disorders, such as lymphomas and other blood cancers, but this is the first study to find that high levels of light chains are associated with increased mortality in the general population. Free light chain levels can be measured by using a serum free light chain assay, a simple blood test. This test is often used to monitor light chain levels in patients with plasma disorders such as myeloma to gauge how well they are responding to treatment.

However, Dr. Rajkumar cautions against administering this test with the intent of gauging one's risk of death.

"We do not recommend this test as a screening test, because it will only cause alarm," Dr. Rajkumar says. "We do not know why this marker is associated with higher rates of death. We do not have a way of turning things around. Therefore, I would urge caution in using this test until we figure out what to do about it and what these results mean."

Plasma cells are white blood cells that produce large amounts of antibodies and are key to fighting off infection. The antibodies are comprised of two different types of molecules tightly joined to each other: heavy chains and light chains. Most people produce at least a slightly excess amount of light chains that can be detected in the blood in the "free" state, unbound to heavy chains. Free light chains are not usually a threat to health, but excess levels serve as a marker of underlying immune system stimulation, kidney failure or plasma cell disorders such as myeloma.

Next steps for researchers include identifying the precise mechanisms by which excess free light chains are associated with a higher likelihood of death and determining if specific diagnostic or treatment options need to be pursued.

The study was funded by the National Institutes of Health. Freelite, the manufacturer of the serum free light chain assay, provided the serum free light chain assay reagents for this study.

About Mayo Clinic
Mayo Clinic is a nonprofit worldwide leader in medical care, research and education for people from all walks of life. For more information, visit and

Nick Hanson | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>