Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic discovery may help diabetic gastric problem

26.09.2008
Mayo Clinic researchers have found what may provide a solution to one of the more troubling complications of diabetes -- delayed gastric emptying or gastroparesis.

The researchers showed in animal models that a red blood cell derivative increases production of a key molecule, normalizing the digestive process. The findings appear in the current online issue of the journal Gastroenterology.

Gastroparesis occurs when the stomach retains food for longer periods. When that food eventually passes into the small intestine, insulin is released. Because the passage of food out of the stomach becomes unpredictable, maintaining a proper blood glucose level -- critical for controlling diabetes -- also becomes difficult. Gastroparesis can cause pain, nausea, vomiting, stomach spasms and weight loss due to inadequate absorption of nutrients.

The abnormally high blood glucose levels cause chemical changes in nerves and in pacemaker cells which regulate digestive processes in the gut, and damage blood vessels that carry oxygen and nutrients to cells.

"If these data are confirmed in humans, it may point toward a treatment for this difficult problem," says Gianrico Farrugia, M.D., Mayo Clinic gastroenterologist and senior author on the study. "Our goal is to normalize gastric emptying and therefore improve a patient's quality of life and glucose control."

Science Behind the Findings

Previous studies in animals and humans showed that two aspects of gastroparesis were: 1) loss of Kit, a marker for interstitial cells of Cajal (ICC), and 2) loss of expression of neuronal nitric oxide synthase (nNOS). ICC cells produce electrical signals that regulate muscle contraction in the digestive tract. nNOS generates nitric oxide, which transmits nerve impulses in the digestive tract. Both are important for normal functioning but can be depleted by oxidative stress (an imbalance in ionic charges at the molecular level), a problem common in diabetes that also can lead to heart and kidney damage.

The research team decided to test a molecule known to protect cells against oxidative injury -- heme oxygenase-1 (HO1). The team measured gastric emptying in a set of diabetic mice and then looked at expression of HO1. Results showed that production of HO1 was lost in all mice with gastroparesis and nNOS expression was decreased. When the team induced HO1 production by introducing hemin, a red blood derivative, gastric emptying returned to normal and Kit and nNOS expression were restored, despite the diabetes. The team says that future research should target the HO1 pathway as a means of reversing the affects of diabetic gastroparesis.

Robert Nellis | EurekAlert!
Further information:
http://www.mayo.edu
http://www.gastrojournal.org

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>