Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New markers for allergic disorders thanks to analysis of medical databases

11.01.2011
Researchers at the University of Gothenburg, Sweden, have developed new methods for analysing medical databases that can be used to identify diagnostic markers more quickly and to personalise medication for allergic disorders. They could also reduce the need for animal trials in clinical studies.

Published in the journal PLoS Computational Biology, the study builds on data analyses of freely available medical databases representing studies of countless numbers of patients in the PubMed database, and microarray data in another major database. The use of microarrays is a method that allows scientists to study all 20,000 human genes at the same time for various disorders.

Groups of researchers in Gothenburg, Oslo and Rome have developed computational methods to simulate how a change in the interaction between several different genes in the lymphocytes (a kind of white blood cell) controls the immune system. They identified the genes by reviewing abstracts of all 18 million articles included in PubMed, and then constructed a network model of how these genes interact.

“The model can be compared to a printed circuit card in the lymphocyte which the cell uses to make decisions about whether to activate or suppress the immune system,” says Mikael Benson, a researcher at the Sahlgrenska Academy’s Unit for Clinical Systems Biology and consultant at the Queen Silvia Children’s Hospital. “These decisions are made constantly as the lymphocytes are constantly exposed to different particles, just through breathing for example. Some of the particles could be dangerous and need to trigger a decision to mobilise the immune system. However, sometimes wrong decisions are made, which can lead to various disorders such as allergy or diabetes.”

The researchers then carried out data simulations of how the network model reacted to repeated exposure to particles, which resulted in four reaction patterns, one of which was to suppress the immune system, while the other three were to trigger it in various ways.

“We found that the genes in the model reacted in lymphocytes from patients with various immunological disorders. We’ll be using the model to identify diagnostic markers so that we can personalise medication that we’re testing in clinical studies of allergy patients.”

Benson believes that these methods will become increasingly important in the future, as the huge amount of information in medical databases is growing all the time. This information could serve as an important resource for researchers in their endeavours to investigate and verify medical hypotheses.

“These methods could reduce the need for animal trials and lead to major savings in both time and money,” says Benson. “They could also mean quicker and better-designed experiments and their results could generate new knowledge about diagnostic markers or new medicines.”

The study comes under two EU projects, ComplexDis and MultiMod, both of which are led from the Sahlgrenska Academy. http://www.multimod-project.eu/index.html

For more information, please contact:
Mikael Benson, researcher, Unit for Clinical Systems Biology, Sahlgrenska Academy,and consultant, Queen Silvia Children’s Hospital,
tel. +46 (0)31 3435 162,
e-mail:mikael.benson@vgregion.se
Journal: PLoS Computational Biology
Title of article: Combining network modeling and gene expression microarray analysis to explore the dynamics of Th1 and Th2 cell regulation

Authors: Marco Pedicini Fredrik Barrenäs, Trevor Clancy, Filippo Castiglione, Eivind Hovig, Kartiek Kanduri, Daniele Santoni, Mikael Benson

Helena Aaberg | idw
Further information:
http://www.multimod-project.eu/index.html
http://www.gu.se

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>