Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Major breakthrough in transplantation immunity

08.04.2009
Australian scientists have made a discovery that may one day remove the need for a lifetime of toxic immunosuppressive drugs after organ transplants.

Professor Jonathan Sprent and Dr Kylie Webster from Sydney's Garvan Institute of Medical Research, in collaboration with colleagues, Dr Shane Grey and Stacey Walters, have successfully tested a method, in experimental mice, of adjusting the immune system for just long enough to receive a tissue transplant and accept it as 'self'. At no stage, during or after the procedure, is there any need for immunosuppressive drugs.

The results are now online in the current edition of the prestigious Journal of Experimental Medicine.

"Under normal circumstances, the body would attack a transplanted organ unless immunosuppressive drugs such as cyclosporin were given," said Sprent. "In this project, mice were given a substance, or 'complex', that altered their immune systems, so that they accepted transplanted cells as their own."

Sprent developed the 'complex' with Professor Charles Surh from California's Scripps Research Institute and Dr Onur Boyman, physician and Head of the Basic Immunology Unit at the University Hospital of Lausanne in Switzerland.

The complex combines a molecule, interleukin-2 (IL-2), with an antibody in order to stimulate immune cells known as T regulatory cells.

"In broad terms, IL-2 is a growth factor for T cells," explained Sprent. "My colleague Onur Boyman discovered that by combining IL-2 with different antibodies you can control its action, boosting specific populations of T cells, while subduing others. For this project we needed to boost the numbers of T regulatory cells."

"T regulatory cells quiet the immune system, subduing the body's killer T cells when it's time to stop fighting an infection."

"The other side of the coin is that a superabundance of T regulatory cells prevents killer T cells from functioning. And you wouldn't want to be without killer T cells for long because they fight infections and cancers."

"For this project, we boosted T regulatory cells temporarily, in a procedure that we believe might be very useful clinically, particularly for preventing rejection."

It was the task of postdoctoral researcher Kylie Webster, working with Stacey Walters, to see if she could make the T regulatory cell response work in a clinically realistic setting.

"We took normal, healthy mice, injected them for three consecutive days with the complex, then transplanted insulin-producing cells on the fourth day," said Kylie. "By the time of transplant there were huge numbers of T regulatory cells in their systems, making graft-destroying T cells ineffective."

"The numbers of T regulatory cells dropped over time, and the immune systems returned to normal in about two weeks. By that time 80% of the mice had accepted the grafts of insulin producing cells as their own."

"This acceptance rate is very high for transplantation, with mice normally rejecting grafts within 2-3 weeks."

"A graft is considered accepted if it's tolerated after 100 days. We took some mice out to 200-300 days, and not one of them rejected."

While cautious, Professor Sprent is very encouraged by the results.

"We have yet to determine exactly how the complex works. Once we do, I believe a clinical trial of this very non-toxic agent would be worthwhile."

"Our approach works well with pancreatic islets, or insulin-producing cells, but we have yet to try other clinically-relevant grafts such as kidneys and hearts, which are technically very difficult in mice," he said.

"I am also aware that effective approaches in mice do not necessarily give good results in humans because of subtle differences in the immune systems of mouse and man."

"Those provisos given, if we were able to duplicate this experiment in humans, it would fulfil the dream of everyone in the transplant field."

ABOUT GARVAN

The Garvan Institute of Medical Research was founded in 1963. Initially a research department of St Vincent's Hospital in Sydney, it is now one of Australia's largest medical research institutions with nearly 500 scientists, students and support staff. Garvan's main research programs are: Cancer, Diabetes & Obesity, Immunology and Inflammation, Osteoporosis and Bone Biology, and Neuroscience. The Garvan's mission is to make significant contributions to medical science that will change the directions of science and medicine and have major impacts on human health. The outcome of Garvan's discoveries is the development of better methods of diagnosis, treatment, and ultimately, prevention of disease.

Alison Heather | EurekAlert!
Further information:
http://www.garvan.org.au

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>