Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LSUSHC research identifies new experimental drug for stroke

01.03.2012
Research led by Nicolas Bazan, MD, PhD, Boyd Professor and Director of the Neuroscience Center of Excellence at LSU Health Sciences Center New Orleans, has found that a synthetic molecule protected the brain in a model of experimental stroke.

Dr. Bazan was issued a patent on the molecule called LAU-0901, a low molecular weight drug that crosses the blood-brain barrier. The findings are published in the March 2012 issue of Translational Stroke Research.

During an ischemic stroke, the most common kind, the body releases signals that cause neuroinflammation which leads to a buildup of chemicals that harm the brain. Platelet-activating factor (PAF) accumulates, and inhibition of this process plays a critical role in neuronal survival.

"LAU-0901 is able to reduce this incorrect signaling and inhibit the PAF receptor, which reduces multiple neuroinflammatory signals and greatly lessens the severity of damage in experimental stroke," notes Dr. Bazan.

The research team used magnetic resonance imaging in conjunction with behavior and immunohistopathology to further study this novel therapeutic approach. The researchers report that LAU-0901, given two hours after the onset of experimental stroke, lessened the severity of brain damage, significantly reduced lesions in the brain, and improved coordination and movement. LAU-0901 produced no discernible side effects. These findings suggest LAU-0901 is a promising neuroprotectant that provides the basis for future therapeutics in patients suffering ischemic stroke.

Stroke is a leading cause of death and disability worldwide. Conventional therapies for ischemic stroke include thrombolytic therapy, prevention of inappropriate coagulation and thrombosis, and surgery to repair vascular abnormalities.Only one FDA-approved therapy exists for treatment of acute ischemic stroke, the thrombolytic tissue plasminogen activator (tPA), but only 5% of all ischemic stroke patients are eligible for treatment with tPA.

The research team also included Professor Ludmila Belayev and MD/PhD student Tiffany Niemoller Eady at LSU Health Sciences Center New Orleans, as well as Dr. Julio Alvarez Builla and other scientists from the University of Alcala, Spain, and Dr. Andre Obenaus at the University of Loma Linda.

The research was supported by grants from the National Institute of Neurological Disorders and Stroke and the National Institute on Aging of the National Institutes of Health.

LSU Health Sciences Center New Orleans educates Louisiana's health care professionals. The state's academic health leader, LSUHSC consists of a School of Medicine, the state's only School of Dentistry, Louisiana's only public School of Public Health, the only School of Nursing within an academic health center in Louisiana, and Schools of Allied Health Professions, and Graduate Studies. LSUHSC faculty take care of patients in public and private hospitals and clinics throughout the region. In the vanguard of biosciences research in a number of areas in a worldwide arena, the LSUHSC research enterprise generates jobs and enormous economic impact. LSUHSC faculty have made lifesaving discoveries and continue to work to prevent, advance treatment, or cure disease. To learn more, visit http://www.lsuhsc.edu and http://www.twitter.com/LSUHSCHealth.

Leslie Capo | EurekAlert!
Further information:
http://www.lsuhsc.edu

More articles from Health and Medicine:

nachricht Mobile phone test can reveal vision problems in time
11.02.2016 | University of Gothenburg

nachricht Proteomics and precision medicine
08.02.2016 | University of Iowa Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Symposium on Climate Change Adaptation in Africa 2016

12.02.2016 | Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

 
Latest News

LIGO confirms RIT's breakthrough prediction of gravitational waves

12.02.2016 | Physics and Astronomy

Gene switch may repair DNA and prevent cancer

12.02.2016 | Life Sciences

Using 'Pacemakers' in spinal cord injuries

12.02.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>