Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Low incidence of venous insufficiency in MS

Imaging study shows CCSVI occurs at a low rate in all study participants
Results of a study using several imaging methods showed that CCSVI (chronic cerebrospinal venous insufficiency) occurs at a low rate in both people with multiple sclerosis (MS) and non-MS volunteers, contrary to some previous studies. The research by an interdisciplinary team at The University of Texas Health Science Center at Houston (UTHealth) was published in a recent early online edition of the Annals of Neurology.

“Our results in this phase of the study suggest that findings in the major veins that drain the brain consistent with CCSVI are uncommon in individuals with MS and quite similar to those found in our non-MS volunteers,” said Jerry Wolinsky, M.D., principal investigator and the Bartels Family and Opal C. Rankin Professor of Neurology at The UTHealth Medical School. “This makes it very unlikely that CCSVI could be the cause of MS, or contribute in an important manner to how the disease can worsen over time.” Wolinsky is also a member of the faculty of The University of Texas Graduate School of Biomedical Sciences at Houston and director of the UTHealth MS Research Group.

CCSVI has been described by Italian neurosurgeon Paolo Zamboni, M.D., as a new disorder in which veins draining the central nervous system are abnormal. Zamboni’s published research linked CCSVI to MS. Not all researchers have been able to duplicate his results.

UTHealth was one of three institutions in the United States to receive an initial grant to study CCSVI in multiple sclerosis (MS). The grant was part of a $2.3 million joint commitment from the National MS Society and the MS Society of Canada.

The UTHealth team tested several imaging methods including ultrasound, magnetic resonance imaging with an intravenous contrast agent, and direct radiologic investigation of the major veins by direct injection of veins with radio-opaque contrast. The goal was to validate a consistent, reliable diagnostic approach for CCSVI, determine whether CCSVI was specific to MS and if CCSVI contributed to disease activity.

The team was blinded to the participant’s diagnosis throughout the study. Doppler ultrasound was used to investigate venous drainage in 276 people with and without MS. Using the criteria described by Zamboni for the diagnosis of CCVSI, UTHealth researchers found less prevalence of CCVSI than in some previous studies and no statistical difference between those with MS and those without MS. Detailed experience with the other imaging approaches are being readied for publication.

Multiple sclerosis is an unpredictable, often disabling disease of the central nervous system, interrupting the flow of information within the brain and from the brain to the body. It affects more than 400,000 people in the United States and 2.1 million in the world.

Co-investigators from the UTHealth Medical School and Mischer Neuroscience Institute include Alan M. Cohen, M.D., professor and chief of Vascular Interventional Radiology; Andrew Barreto, M.D, assistant professor of neurology and director of the neurosonography laboratory; Larry Kramer, M.D., professor of diagnostic and interventional imaging and chief of Cardiovascular MRI; Ponnada Narayana, Ph.D., professor of diagnostic and interventional imaging and director of the MR Research Group; Staley A. Brod, M.D., professor of neurology; John W. Lindsey, professor of neurology; and Flavia Nelson, associate professor of neurology.
Deborah Mann Lake
Media Hotline: 713-500-3030

Deborah Lake | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>