Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Low dose naltrexone (LDN): Harnessing the body's own chemistry to treat human ovarian cancer

13.07.2011
Researchers at The Pennsylvania State University College of Medicine, Hershey, Pennsylvania have discovered that a low dose of the opioid antagonist naltrexone (LDN) has an extraordinarily potent antitumor effect on human ovarian cancer in tissue culture and xenografts established in nude mice.

When LDN is combined with chemotherapy, there is an additive inhibitory action on tumorigenesis. This discovery, reported in the July 2011 issue of Experimental Biology and Medicine, provides new insights into the pathogenesis and treatment of ovarian neoplasia, the 4th leading cause of cancer-related mortality among women in the United States.

The strategy of LDN therapy in repressing cancer was first reported over 30 years ago by Drs. Zagon and McLaughlin (Science 221:671-673). Naltrexone (NTX) is a general opioid receptor antagonist devoid of intrinsic activity that results in a compensatory elevation in endogenous opioids and opioid receptors. Blockade of opioid peptides from opioid receptors for a short time each day (4 to 6 hr) with LDN provides a sufficient window of time (18-20 hr) for the elevated levels of endogenous opioids and opioid receptors to interact and elicit a response: inhibition of cell proliferation. Thus, LDN acts as a decoy to upregulate native opioids and opioid receptors. When NTX is metabolized and no longer present, an enhanced opioid-receptor effect is permitted to occur.

The endogenous opioid peptide, opioid growth factor (OGF) (chemical term = [Met5]-enkephalin) and its receptor (OGFr) is related to LDN action, and constitutes a tonically active inhibitory axis that suppresses cell proliferation through a depression in DNA synthesis by way of cyclin-dependent kinase inhibitory pathways. In the case of human ovarian cancer, this laboratory (Amer. J. Physiol. 296:R1716-1725, 2009) previously found that the OGF-OGFr axis is present and functional in human ovarian cancer.

The present study addressed the question of whether modulation of the OGF-OGFr axis by LDN could alter the progression of established ovarian tumors. Moreover, the authors asked whether LDN can be combined with standard chemotherapy to invoke an even greater effect on ovarian cancer. A model of LDN in tissue culture was established that exposed human ovarian cancer cells to NTX for 6 hr every two days, resulting in reduced DNA synthesis and cell replication from vehicle subjected controls.

When a short term exposure to NTX was combined with standard of care chemotherapeutic agents, taxol or cisplatin, an enhanced anticancer action relative to either drug was observed. The effects of LDN, but not taxol or cisplatin, could be reversed, indicating the non-toxic nature of LDN. Although favorable results with LDN alone and in combination with chemotherapeutic drugs were recorded in a tissue culture setting, this begged the question of whether LDN was effective on tumors transplanted into mice. Using nude mice with established xenografts of human ovarian cancer, LDN was found to repress tumor progression, reducing DNA synthesis and angiogenesis but not altering cell survival. LDN's repression of cancer progression was comparable to that of cisplatin or taxol. However, the combination of LDN with cisplatin, but not taxol, had an even greater antitumor effect than LDN or taxol alone. Moreover, cisplatin was toxic to the mice, as detected by weight loss. However, LDN in combination with cisplatin attenuated the toxicity of this chemotherapeutic agent, indicating that LDN was protective of the adverse events elicited by a chemotherapeutic drug. Finally, LDN was discovered to upregulate the expression of both OGF and OGFr, indicating that this endogenous opioid system, which inhibits cell proliferation, was activated by LDN.

The research team was comprised of Dr. Ian S. Zagon, Distinguished University Professor, and Dr. Patricia J. McLaughlin, Professor, along with a doctoral student, Dr. Renee N. Donahue, in the Department of Neural & Behavioral Sciences. Drs. Zagon and McLaughlin have extensive collaborations focused on demonstrating the remarkable properties of LDN and OGF in a variety of preclinical and clinical studies. LDN has proven successful in Phase I and II clinical trials in the treatment of Crohn's disease, and OGF has been found to be safe and efficacious for pancreatic cancer. Co-author Dr. McLaughlin states: "Given the extraordinary biological control of the OGF-OGFr axis with respect to cell proliferation, and the unique modulatory capability of LDN to enhance opioid-receptor response by way of native biological processes, this is particularly attractive as a biological-based treatment in arresting the progression of ovarian cancer." Dr. Zagon adds that "More than 75% of women are diagnosed with ovarian cancer in advanced stages because of a lack of diagnostic biomarkers. Although the initial clinical response to cytoreductive surgery and adjuvant chemotherapy is excellent, nearly 65% of advanced-staged patients relapse within 2 years. All subsequent treatments are pallative. Thus, the clinical implications of our study speak to the urgency for initiating clinical trials using LDN in the treatment of advanced ovarian cancer."

Steven Goodman, Ph.D. Editor-in-Chief of Experimental Biology and Medicine said "Researchers at The Pennsylvania State University College of Medicine have discovered that a low dose of the opioid antagonist naltrexone markedly suppresses progression of human ovarian cancer transplanted into mice. Low dose naltrexone combined with cisplatin, but not taxol, had an additive inhibitory action on tumorigenesis. Therefore low dose naltrexone offers a non-toxic and efficacious biologic pathway-related treatment that may benefit patients with this ovarian cancer."

Experimental Biology and Medicine is a journal dedicated to the publication of multidisciplinary and interdisciplinary research in the biomedical sciences.

Experimental Biology and Medicine is the journal of the Society of Experimental Biology and Medicine. To learn about the benefits of society membership visit www.sebm.org. If you are interested in publishing in the journal please visit http://ebm.rsmjournals.com

Dr. Ian Zagon | EurekAlert!
Further information:
http://www.psu.edu

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>