Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Low dose naltrexone (LDN): Harnessing the body's own chemistry to treat human ovarian cancer

13.07.2011
Researchers at The Pennsylvania State University College of Medicine, Hershey, Pennsylvania have discovered that a low dose of the opioid antagonist naltrexone (LDN) has an extraordinarily potent antitumor effect on human ovarian cancer in tissue culture and xenografts established in nude mice.

When LDN is combined with chemotherapy, there is an additive inhibitory action on tumorigenesis. This discovery, reported in the July 2011 issue of Experimental Biology and Medicine, provides new insights into the pathogenesis and treatment of ovarian neoplasia, the 4th leading cause of cancer-related mortality among women in the United States.

The strategy of LDN therapy in repressing cancer was first reported over 30 years ago by Drs. Zagon and McLaughlin (Science 221:671-673). Naltrexone (NTX) is a general opioid receptor antagonist devoid of intrinsic activity that results in a compensatory elevation in endogenous opioids and opioid receptors. Blockade of opioid peptides from opioid receptors for a short time each day (4 to 6 hr) with LDN provides a sufficient window of time (18-20 hr) for the elevated levels of endogenous opioids and opioid receptors to interact and elicit a response: inhibition of cell proliferation. Thus, LDN acts as a decoy to upregulate native opioids and opioid receptors. When NTX is metabolized and no longer present, an enhanced opioid-receptor effect is permitted to occur.

The endogenous opioid peptide, opioid growth factor (OGF) (chemical term = [Met5]-enkephalin) and its receptor (OGFr) is related to LDN action, and constitutes a tonically active inhibitory axis that suppresses cell proliferation through a depression in DNA synthesis by way of cyclin-dependent kinase inhibitory pathways. In the case of human ovarian cancer, this laboratory (Amer. J. Physiol. 296:R1716-1725, 2009) previously found that the OGF-OGFr axis is present and functional in human ovarian cancer.

The present study addressed the question of whether modulation of the OGF-OGFr axis by LDN could alter the progression of established ovarian tumors. Moreover, the authors asked whether LDN can be combined with standard chemotherapy to invoke an even greater effect on ovarian cancer. A model of LDN in tissue culture was established that exposed human ovarian cancer cells to NTX for 6 hr every two days, resulting in reduced DNA synthesis and cell replication from vehicle subjected controls.

When a short term exposure to NTX was combined with standard of care chemotherapeutic agents, taxol or cisplatin, an enhanced anticancer action relative to either drug was observed. The effects of LDN, but not taxol or cisplatin, could be reversed, indicating the non-toxic nature of LDN. Although favorable results with LDN alone and in combination with chemotherapeutic drugs were recorded in a tissue culture setting, this begged the question of whether LDN was effective on tumors transplanted into mice. Using nude mice with established xenografts of human ovarian cancer, LDN was found to repress tumor progression, reducing DNA synthesis and angiogenesis but not altering cell survival. LDN's repression of cancer progression was comparable to that of cisplatin or taxol. However, the combination of LDN with cisplatin, but not taxol, had an even greater antitumor effect than LDN or taxol alone. Moreover, cisplatin was toxic to the mice, as detected by weight loss. However, LDN in combination with cisplatin attenuated the toxicity of this chemotherapeutic agent, indicating that LDN was protective of the adverse events elicited by a chemotherapeutic drug. Finally, LDN was discovered to upregulate the expression of both OGF and OGFr, indicating that this endogenous opioid system, which inhibits cell proliferation, was activated by LDN.

The research team was comprised of Dr. Ian S. Zagon, Distinguished University Professor, and Dr. Patricia J. McLaughlin, Professor, along with a doctoral student, Dr. Renee N. Donahue, in the Department of Neural & Behavioral Sciences. Drs. Zagon and McLaughlin have extensive collaborations focused on demonstrating the remarkable properties of LDN and OGF in a variety of preclinical and clinical studies. LDN has proven successful in Phase I and II clinical trials in the treatment of Crohn's disease, and OGF has been found to be safe and efficacious for pancreatic cancer. Co-author Dr. McLaughlin states: "Given the extraordinary biological control of the OGF-OGFr axis with respect to cell proliferation, and the unique modulatory capability of LDN to enhance opioid-receptor response by way of native biological processes, this is particularly attractive as a biological-based treatment in arresting the progression of ovarian cancer." Dr. Zagon adds that "More than 75% of women are diagnosed with ovarian cancer in advanced stages because of a lack of diagnostic biomarkers. Although the initial clinical response to cytoreductive surgery and adjuvant chemotherapy is excellent, nearly 65% of advanced-staged patients relapse within 2 years. All subsequent treatments are pallative. Thus, the clinical implications of our study speak to the urgency for initiating clinical trials using LDN in the treatment of advanced ovarian cancer."

Steven Goodman, Ph.D. Editor-in-Chief of Experimental Biology and Medicine said "Researchers at The Pennsylvania State University College of Medicine have discovered that a low dose of the opioid antagonist naltrexone markedly suppresses progression of human ovarian cancer transplanted into mice. Low dose naltrexone combined with cisplatin, but not taxol, had an additive inhibitory action on tumorigenesis. Therefore low dose naltrexone offers a non-toxic and efficacious biologic pathway-related treatment that may benefit patients with this ovarian cancer."

Experimental Biology and Medicine is a journal dedicated to the publication of multidisciplinary and interdisciplinary research in the biomedical sciences.

Experimental Biology and Medicine is the journal of the Society of Experimental Biology and Medicine. To learn about the benefits of society membership visit www.sebm.org. If you are interested in publishing in the journal please visit http://ebm.rsmjournals.com

Dr. Ian Zagon | EurekAlert!
Further information:
http://www.psu.edu

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>