Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Low dose naltrexone (LDN): Harnessing the body's own chemistry to treat human ovarian cancer

13.07.2011
Researchers at The Pennsylvania State University College of Medicine, Hershey, Pennsylvania have discovered that a low dose of the opioid antagonist naltrexone (LDN) has an extraordinarily potent antitumor effect on human ovarian cancer in tissue culture and xenografts established in nude mice.

When LDN is combined with chemotherapy, there is an additive inhibitory action on tumorigenesis. This discovery, reported in the July 2011 issue of Experimental Biology and Medicine, provides new insights into the pathogenesis and treatment of ovarian neoplasia, the 4th leading cause of cancer-related mortality among women in the United States.

The strategy of LDN therapy in repressing cancer was first reported over 30 years ago by Drs. Zagon and McLaughlin (Science 221:671-673). Naltrexone (NTX) is a general opioid receptor antagonist devoid of intrinsic activity that results in a compensatory elevation in endogenous opioids and opioid receptors. Blockade of opioid peptides from opioid receptors for a short time each day (4 to 6 hr) with LDN provides a sufficient window of time (18-20 hr) for the elevated levels of endogenous opioids and opioid receptors to interact and elicit a response: inhibition of cell proliferation. Thus, LDN acts as a decoy to upregulate native opioids and opioid receptors. When NTX is metabolized and no longer present, an enhanced opioid-receptor effect is permitted to occur.

The endogenous opioid peptide, opioid growth factor (OGF) (chemical term = [Met5]-enkephalin) and its receptor (OGFr) is related to LDN action, and constitutes a tonically active inhibitory axis that suppresses cell proliferation through a depression in DNA synthesis by way of cyclin-dependent kinase inhibitory pathways. In the case of human ovarian cancer, this laboratory (Amer. J. Physiol. 296:R1716-1725, 2009) previously found that the OGF-OGFr axis is present and functional in human ovarian cancer.

The present study addressed the question of whether modulation of the OGF-OGFr axis by LDN could alter the progression of established ovarian tumors. Moreover, the authors asked whether LDN can be combined with standard chemotherapy to invoke an even greater effect on ovarian cancer. A model of LDN in tissue culture was established that exposed human ovarian cancer cells to NTX for 6 hr every two days, resulting in reduced DNA synthesis and cell replication from vehicle subjected controls.

When a short term exposure to NTX was combined with standard of care chemotherapeutic agents, taxol or cisplatin, an enhanced anticancer action relative to either drug was observed. The effects of LDN, but not taxol or cisplatin, could be reversed, indicating the non-toxic nature of LDN. Although favorable results with LDN alone and in combination with chemotherapeutic drugs were recorded in a tissue culture setting, this begged the question of whether LDN was effective on tumors transplanted into mice. Using nude mice with established xenografts of human ovarian cancer, LDN was found to repress tumor progression, reducing DNA synthesis and angiogenesis but not altering cell survival. LDN's repression of cancer progression was comparable to that of cisplatin or taxol. However, the combination of LDN with cisplatin, but not taxol, had an even greater antitumor effect than LDN or taxol alone. Moreover, cisplatin was toxic to the mice, as detected by weight loss. However, LDN in combination with cisplatin attenuated the toxicity of this chemotherapeutic agent, indicating that LDN was protective of the adverse events elicited by a chemotherapeutic drug. Finally, LDN was discovered to upregulate the expression of both OGF and OGFr, indicating that this endogenous opioid system, which inhibits cell proliferation, was activated by LDN.

The research team was comprised of Dr. Ian S. Zagon, Distinguished University Professor, and Dr. Patricia J. McLaughlin, Professor, along with a doctoral student, Dr. Renee N. Donahue, in the Department of Neural & Behavioral Sciences. Drs. Zagon and McLaughlin have extensive collaborations focused on demonstrating the remarkable properties of LDN and OGF in a variety of preclinical and clinical studies. LDN has proven successful in Phase I and II clinical trials in the treatment of Crohn's disease, and OGF has been found to be safe and efficacious for pancreatic cancer. Co-author Dr. McLaughlin states: "Given the extraordinary biological control of the OGF-OGFr axis with respect to cell proliferation, and the unique modulatory capability of LDN to enhance opioid-receptor response by way of native biological processes, this is particularly attractive as a biological-based treatment in arresting the progression of ovarian cancer." Dr. Zagon adds that "More than 75% of women are diagnosed with ovarian cancer in advanced stages because of a lack of diagnostic biomarkers. Although the initial clinical response to cytoreductive surgery and adjuvant chemotherapy is excellent, nearly 65% of advanced-staged patients relapse within 2 years. All subsequent treatments are pallative. Thus, the clinical implications of our study speak to the urgency for initiating clinical trials using LDN in the treatment of advanced ovarian cancer."

Steven Goodman, Ph.D. Editor-in-Chief of Experimental Biology and Medicine said "Researchers at The Pennsylvania State University College of Medicine have discovered that a low dose of the opioid antagonist naltrexone markedly suppresses progression of human ovarian cancer transplanted into mice. Low dose naltrexone combined with cisplatin, but not taxol, had an additive inhibitory action on tumorigenesis. Therefore low dose naltrexone offers a non-toxic and efficacious biologic pathway-related treatment that may benefit patients with this ovarian cancer."

Experimental Biology and Medicine is a journal dedicated to the publication of multidisciplinary and interdisciplinary research in the biomedical sciences.

Experimental Biology and Medicine is the journal of the Society of Experimental Biology and Medicine. To learn about the benefits of society membership visit www.sebm.org. If you are interested in publishing in the journal please visit http://ebm.rsmjournals.com

Dr. Ian Zagon | EurekAlert!
Further information:
http://www.psu.edu

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>