Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Love handles” melt away at the push of a button

24.04.2013
For a long time, scientists have dreamt of converting undesirable white fat cells into brown fat cells and thus simply have excess pounds melt away.

Researchers at the University of Bonn have now gotten a step closer to this goal: They decoded a “toggle switch” in mice which can significantly stimulate fat burning. The results are now being presented in the scientifc journal “Nature Communications”.

Many people not only in industrialized nations struggle with excess weight - but all fat is not alike. “Love handles” in particular contain troublesome white fat cells which store excess food. Brown fat cells are the exact opposite: they burn excess energy as the desirable “heaters” of the body. Scientists at the University of Bonn working with Prof. Dr. Alexander Pfeifer, Director of the Institute for Pharmacology and Toxicology, have spent years using animal models to explore how the undesirable white fat can be converted into sought-after brown fat. “In this way, excess pounds may be able to simply be melted away and obesity combated“, says Prof. Pfeifer.

A kind of “trigger switch” spurs fat burning

The researchers have now decoded a “microRNA switch” in mice which is important for brown fat cells. Micro-RNAs are located in the genome of cells and very quickly and efficiently regulate gene activity. The researchers studied a specific microRNA: microRNA 155. The gene regulator micro-RNA 155 inhibits a certain transcription factor, that controls brown fat cell function. Surprisingly, Prof. Pfeifer and his team found that the transcription factor also regulates the levels microRNA 155 establishing a tight feed-back loop that works like a toggle switch: When the microRNA is highly expressed brown fat cell differentiation is blocked; conversely, if the transcription factor wins the upper hand, brown fat is produced at an increased level and this in turn boosts fat burning in the body.

In knockout mice, the gene for Micro-RNA 155 was silent

The researchers at Bonn University and their colleagues from the Federal Institute of Drugs and Medical Devices (BfArM) and from the University of Regensburg worked with so-called transgenic and knockout mice in whom the gene for micro-RNA 155 was either increased or silenced. “The mechanism was already set in motion when the micro-RNA 155 was only halved in the mice,” reports lead author Yong Chen, graduate student of the NRW International Graduate School BIOTECH-PHARMA. The mice then had significantly more brown fat cells available than did the control gro up - and had even converted white fat cells into brown fat cells.

Clues to the causes of lipid metabolism diseases

The micro-RNA functions as an antagonist to the brown fat cells. ”As long as enough micro-RNA 155 is present, the production of brown fat cells is blocked,” says Chen. Only if it falls below a certain proportion does this brake let up; the blueprint for brown fat can be read and implemented by the cell - the desired fat burners can develop. These findings help scientists better understand the causes of lipid metabolism diseases.

Hope for new therapies against obesity

The scientists at the University of Bonn see in their results a potential starting point for drugs to combat obesity. The researchers have clues to the fact that the results, if anything, can be transferred from mice to humans. Thus, for example, researchers in Leipzig found increased levels of micro-RNA 155 in significantly overweight patients. This corresponds to findings from animal models: A lot of micro-RNA 155 is associated with reduced fat burning. “However, we are still in the basic research stage,” says Prof. Pfeifer. The path to suitable drugs is still a long one.
Publication: miR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit, Nature Communications, DOI: 10.1038/ncomms2742

Contact Information:

Prof. Dr. Alexander Pfeifer
Institute for Pharmacology and Toxicology
Tel. 0228/28751300
E-Mail: alexander.pfeifer@uni-bonn.de

Johannes Seiler | idw
Further information:
http://www.uni-bonn.de

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>