Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long-term effects of radiopharmaceuticals

20.08.2010
Low-level radioactive substances are used in medicine for diagnosing cancer, among other things. Progress in this area is the objective of a European project coordinated at the university hospital in Würzburg.

Are there cancer cells in the thyroid? Have metastases detached themselves from a tumor and moved elsewhere in the body?

Diagnostic questions such as these can be answered by nuclear physicians using low-level, short-lived radioactive substances. These so-called radiopharmaceuticals spread throughout the organism in a unique fashion and accumulate in large numbers in cancer cells, for example. Their radioactive signal can be measured, thereby revealing the location of tumor cells.

Now in Europe for the first time the basic scientific principles for all permitted radiopharmaceuticals will be systematically presented and assessed – as part of the PEDDOSE.NET project. The European Commission is providing EUR 500,000 in funding.

Goals of the project

One of the goals is to describe current knowledge relating to any effects of low-level radioactive pharmaceuticals on health. The focus is on substances administered to children and young people for diagnostic purposes. Within the project, the scientists will collate and assess data on anticipated exposure to radiation and any associated risks. They then aim to recommend how these data should be collated in the development of new radiopharmaceuticals.

A further goal for PEDDOSE.NET is to devise recommendations and guidelines in order to drive scientific and technological innovations. For example, the scientists believe that it will be possible in future to administer radiopharmaceuticals in even smaller doses, thereby further reducing the hypothetical risk to patients.

Another of the project’s goals is to identify any areas in which further clinical studies may be required. On every issue the scientists will collaborate with the authorities responsible for approving new substances.

Results expected in fall 2011

It is expected that the project will be completed in fall 2011. Its results should further improve radiation protection for patients and make the use of nuclear-medical examinations even more targeted than it is now.

Partners involved in the project

Five partner institutes from four European countries are involved in PEDDOSE.NET; the scientific coordinator is Professor Michael Laßmann, chief physicist at the Department of Nuclear Medicine of the University of Würzburg.

The project is being coordinated by the European Institute for Biomedical Imaging Research (EIBIR) in Vienna. It has the support of the European Association of Nuclear Medicine (EANM). The project consortium is made up of members of the EANM Dosimetry Committee and experts from the German Federal Office for Radiation Protection.

Homepage of the PEDDOSE.NET project: http://www.peddose.net

Contact

Prof. Dr. Michael Laßmann, Department of Nuclear Medicine, University of Würzburg, T +49 (0)931 201-35500, lassmann@nuklearmedizin.uni-wuerzburg.de

Robert Emmerich | idw
Further information:
http://www.peddose.net
http://www.uni-wuerzburg.de

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>