Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long-term effects of radiopharmaceuticals

20.08.2010
Low-level radioactive substances are used in medicine for diagnosing cancer, among other things. Progress in this area is the objective of a European project coordinated at the university hospital in Würzburg.

Are there cancer cells in the thyroid? Have metastases detached themselves from a tumor and moved elsewhere in the body?

Diagnostic questions such as these can be answered by nuclear physicians using low-level, short-lived radioactive substances. These so-called radiopharmaceuticals spread throughout the organism in a unique fashion and accumulate in large numbers in cancer cells, for example. Their radioactive signal can be measured, thereby revealing the location of tumor cells.

Now in Europe for the first time the basic scientific principles for all permitted radiopharmaceuticals will be systematically presented and assessed – as part of the PEDDOSE.NET project. The European Commission is providing EUR 500,000 in funding.

Goals of the project

One of the goals is to describe current knowledge relating to any effects of low-level radioactive pharmaceuticals on health. The focus is on substances administered to children and young people for diagnostic purposes. Within the project, the scientists will collate and assess data on anticipated exposure to radiation and any associated risks. They then aim to recommend how these data should be collated in the development of new radiopharmaceuticals.

A further goal for PEDDOSE.NET is to devise recommendations and guidelines in order to drive scientific and technological innovations. For example, the scientists believe that it will be possible in future to administer radiopharmaceuticals in even smaller doses, thereby further reducing the hypothetical risk to patients.

Another of the project’s goals is to identify any areas in which further clinical studies may be required. On every issue the scientists will collaborate with the authorities responsible for approving new substances.

Results expected in fall 2011

It is expected that the project will be completed in fall 2011. Its results should further improve radiation protection for patients and make the use of nuclear-medical examinations even more targeted than it is now.

Partners involved in the project

Five partner institutes from four European countries are involved in PEDDOSE.NET; the scientific coordinator is Professor Michael Laßmann, chief physicist at the Department of Nuclear Medicine of the University of Würzburg.

The project is being coordinated by the European Institute for Biomedical Imaging Research (EIBIR) in Vienna. It has the support of the European Association of Nuclear Medicine (EANM). The project consortium is made up of members of the EANM Dosimetry Committee and experts from the German Federal Office for Radiation Protection.

Homepage of the PEDDOSE.NET project: http://www.peddose.net

Contact

Prof. Dr. Michael Laßmann, Department of Nuclear Medicine, University of Würzburg, T +49 (0)931 201-35500, lassmann@nuklearmedizin.uni-wuerzburg.de

Robert Emmerich | idw
Further information:
http://www.peddose.net
http://www.uni-wuerzburg.de

More articles from Health and Medicine:

nachricht Spanish scientists create a 3-D bioprinter to print human skin
24.01.2017 | Carlos III University of Madrid

nachricht Tracking movement of immune cells identifies key first steps in inflammatory arthritis
23.01.2017 | Massachusetts General Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>