Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New link between pollution, temperature and sleep-disordered breathing

15.06.2010
Researchers from Brigham and Women's Hospital and the Harvard School of Public Health have established the first link between air pollution and sleep-disordered breathing (SDB), a known cause of cardiovascular diseases.

Antonella Zanobetti, Ph.D., Susan Redline, MD, MPH, Diane Gold, M.D., M.P.H. and colleagues explored the link between air pollution levels, temperature increases and sleep-disordered breathing using data from the Sleep Heart Health Study, which included more than 6,000 participants between 1995 and 1998, and EPA air pollution monitoring data from Framingham (Massachusetts), Minneapolis, New York City, Phoenix, Pittsburgh, Sacramento, and Tucson.

The study appears online ahead of the print edition of the American Journal of Respiratory and Critical Care Medicine on the American Thoracic Society's Web site.

SDB affects up to 17 percent of U.S. adults, many of whom are not aware that they have a problem. Air pollution is also an endemic issue in many of the nation's urban areas. Both SDB and pollution have been associated with a range of health problems, including increased cardiovascular mortality. "The influence of air pollution on SDB is poorly understood," said Dr. Zanobetti. "Our hypothesis was that elevation in ambient air pollution would be associated with an increased risk of SDB and nocturnal hypoxia, as well as with reduced sleep quality." The researchers further hypothesized that seasonal variations in temperature would exert an independent effect on SDB and sleep efficiency.

To test their hypotheses, the researchers used linear regression models that controlled for seasonality, mean temperature and other factors known to be associated with SDB, such as age, gender and smoking.

To examine the role of seasons, they performed a separate analysis, adding the interaction of season with the level of air pollution in the form of particulate matter under 10 ìm, which is commonly associated with traffic. They evaluated long-term effects by computing the moving 365-day average of PM10.

In total, they included more than 3,000 individuals in their analysis.

"We found novel evidence for pollution and temperature effects on sleep-disordered breathing," said Dr. Zanobetti. "Increases in apnea or hypopnea…were associated with increases in short-term temperature over all seasons, and with increases in particle pollution levels in the summer months."

Over all seasons, the researchers found that short-term elevations in temperature were associated with increased in Respiratory Disturbance Index (RDI), which was used to gauge the severity of SDB. In the summer, increases in PM10 were also associated with an increase in RDI (representing a 12.9 percent increase), as well as with an increase in the percent of time that blood oxygen saturation levels fell below 90 percent (representing a nearly 20 percent increase) and a decrease in sleep efficiency. There were no such statistically significant associations of particulate pollution with SDB in other seasons.

This is the first study to link pollution exposure and SDB.

"Particles may influence sleep through effects on the central nervous system, as well as the upper airways," wrote Dr. Zanobetti. "…Poor sleep [associated with poor health outcomes] may disproportionately afflict poor urban populations. Our findings suggest that one mechanism for poor sleep and sleep health disparities may relate to environmental pollution levels."

Other research has found an association between elevation in pollution and increased risk of sudden infant death syndrome (SIDS). There is a known overlap between etiologic factors for SIDS and SDB. Given the results of the current research, "the mechanisms that increase the risk of SIDS in associations with ambient pollutants may be similar to the mechanisms that underlie the risk of SDB…,[which] may include pollutant-associated effects on central or peripheral neurotransmitters that influence sleep-state stability," said Dr. Zanobetti.

Several studies have also reported that temperature predicts mortality. "The association we found between short-term temperature and RDI could represent one possible mechanism by which changes across the range of temperature could predict mortality," said Dr. Zanobetti.

Perhaps most importantly, the prevalence of SDB in the United States may increase as obesity rises. "While therapies are available for the disorder, the majority of adults with SDB are not being treated and many people are resistant to therapy," said Dr. Zanobetti. "Along with reduction in obesity, these new data suggest that reduction in air pollution exposure might decrease severity of SDB and nocturnal hypoxia and may improve cardiac risk."

John Heffner, M.D., past president of the American Thoracic Society observed, "This study gains even greater importance as scientists increasingly demonstrate the critical importance of sleep to health and well being. SDB increases risks for cardiovascular disease, strokes and other major health conditions. Air pollution is an independent contributor to most of these disorders and may produce its negative health effects by promoting SDB as an intermediary step in the pathway toward disease."

This study was funded by the National Heart Lung and Blood Institute, the National Institute of Environmental Health Sciences and the Environmental Protection Agency.

Link to podcast: http://www.thoracic.org/newsroom/press-releases/journal/podcast/061510-zanobetti.mp3

Keely Savoie | EurekAlert!
Further information:
http://www.thoracic.rog

More articles from Health and Medicine:

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

nachricht Chances to treat childhood dementia
24.07.2017 | Julius-Maximilians-Universität Würzburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>