Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New link between pollution, temperature and sleep-disordered breathing

15.06.2010
Researchers from Brigham and Women's Hospital and the Harvard School of Public Health have established the first link between air pollution and sleep-disordered breathing (SDB), a known cause of cardiovascular diseases.

Antonella Zanobetti, Ph.D., Susan Redline, MD, MPH, Diane Gold, M.D., M.P.H. and colleagues explored the link between air pollution levels, temperature increases and sleep-disordered breathing using data from the Sleep Heart Health Study, which included more than 6,000 participants between 1995 and 1998, and EPA air pollution monitoring data from Framingham (Massachusetts), Minneapolis, New York City, Phoenix, Pittsburgh, Sacramento, and Tucson.

The study appears online ahead of the print edition of the American Journal of Respiratory and Critical Care Medicine on the American Thoracic Society's Web site.

SDB affects up to 17 percent of U.S. adults, many of whom are not aware that they have a problem. Air pollution is also an endemic issue in many of the nation's urban areas. Both SDB and pollution have been associated with a range of health problems, including increased cardiovascular mortality. "The influence of air pollution on SDB is poorly understood," said Dr. Zanobetti. "Our hypothesis was that elevation in ambient air pollution would be associated with an increased risk of SDB and nocturnal hypoxia, as well as with reduced sleep quality." The researchers further hypothesized that seasonal variations in temperature would exert an independent effect on SDB and sleep efficiency.

To test their hypotheses, the researchers used linear regression models that controlled for seasonality, mean temperature and other factors known to be associated with SDB, such as age, gender and smoking.

To examine the role of seasons, they performed a separate analysis, adding the interaction of season with the level of air pollution in the form of particulate matter under 10 ìm, which is commonly associated with traffic. They evaluated long-term effects by computing the moving 365-day average of PM10.

In total, they included more than 3,000 individuals in their analysis.

"We found novel evidence for pollution and temperature effects on sleep-disordered breathing," said Dr. Zanobetti. "Increases in apnea or hypopnea…were associated with increases in short-term temperature over all seasons, and with increases in particle pollution levels in the summer months."

Over all seasons, the researchers found that short-term elevations in temperature were associated with increased in Respiratory Disturbance Index (RDI), which was used to gauge the severity of SDB. In the summer, increases in PM10 were also associated with an increase in RDI (representing a 12.9 percent increase), as well as with an increase in the percent of time that blood oxygen saturation levels fell below 90 percent (representing a nearly 20 percent increase) and a decrease in sleep efficiency. There were no such statistically significant associations of particulate pollution with SDB in other seasons.

This is the first study to link pollution exposure and SDB.

"Particles may influence sleep through effects on the central nervous system, as well as the upper airways," wrote Dr. Zanobetti. "…Poor sleep [associated with poor health outcomes] may disproportionately afflict poor urban populations. Our findings suggest that one mechanism for poor sleep and sleep health disparities may relate to environmental pollution levels."

Other research has found an association between elevation in pollution and increased risk of sudden infant death syndrome (SIDS). There is a known overlap between etiologic factors for SIDS and SDB. Given the results of the current research, "the mechanisms that increase the risk of SIDS in associations with ambient pollutants may be similar to the mechanisms that underlie the risk of SDB…,[which] may include pollutant-associated effects on central or peripheral neurotransmitters that influence sleep-state stability," said Dr. Zanobetti.

Several studies have also reported that temperature predicts mortality. "The association we found between short-term temperature and RDI could represent one possible mechanism by which changes across the range of temperature could predict mortality," said Dr. Zanobetti.

Perhaps most importantly, the prevalence of SDB in the United States may increase as obesity rises. "While therapies are available for the disorder, the majority of adults with SDB are not being treated and many people are resistant to therapy," said Dr. Zanobetti. "Along with reduction in obesity, these new data suggest that reduction in air pollution exposure might decrease severity of SDB and nocturnal hypoxia and may improve cardiac risk."

John Heffner, M.D., past president of the American Thoracic Society observed, "This study gains even greater importance as scientists increasingly demonstrate the critical importance of sleep to health and well being. SDB increases risks for cardiovascular disease, strokes and other major health conditions. Air pollution is an independent contributor to most of these disorders and may produce its negative health effects by promoting SDB as an intermediary step in the pathway toward disease."

This study was funded by the National Heart Lung and Blood Institute, the National Institute of Environmental Health Sciences and the Environmental Protection Agency.

Link to podcast: http://www.thoracic.org/newsroom/press-releases/journal/podcast/061510-zanobetti.mp3

Keely Savoie | EurekAlert!
Further information:
http://www.thoracic.rog

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>