Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Learning by osmosis

17.11.2008
New brain images show subconscious learning in action and could be used to monitor language rehabilitation

When you listen to someone speaking, it may seem like the words are segmented by pauses, much like the words on this page are separated by spaces. But in reality, you hear a continuous stream of sounds that your brain must organize into meaningful chunks.

One process that mediates this ability is called statistical learning, by which the brain automatically keeps track of how often events, such as sounds, occur together. Now a team of RIKEN scientists has found a signature pattern of brain activity that can predict a person’s degree of achievement in this type of task1.

The team led by Kazuo Okanoya presented volunteers with a 20-minute recording of an artificial language, which they heard passively in three 6.6-minute sessions. While the recording played, participants’ brain activity was measured using an imaging technique called electroencephalograms or EEGs. The researchers then analyzed how the EEG patterns related to events in the recorded language.

This language, instead of being composed of pronounceable syllables, contained only tones, similar to keyboard notes. “We used nonsense tone words to detect basic perceptual processes that are independent of linguistic faculty,” explains team-member Dilshat Abla. This way, the researchers were able to focus on the brain-activity signature of general statistical learning, rather than the specific example of language. The recording heard by the participants consisted of six ‘words’ containing three tones each, but since they were played together without gaps, the word composition would not have been immediately obvious. The participants were told to relax and listen to the streaming sound, and at the end of the experiment, they were tested on which tone triplets came from their recording and which were randomly generated.

The participants succeeded in this discrimination, which revealed to the researchers that they had performed statistical learning without exerting conscious effort. Those who earned average scores in this test showed a distinctive pattern of brain activity in the third recording session. These electric signatures, known as event-related potentials or ERPs, tended to occur 400 milliseconds after the start of a new tone word. Those who scored the lowest did not exhibit these ERPs in any session, suggesting they were not segmenting the start of each word as effectively.

The highest-scoring volunteers did show these ERPs, but only in their first session. Abla explains that the effect is “largest during the discovery phase of the statistical structure,” and represents the process rather than the result of statistical learning.

1. Abla, D., Katahira, K., & Okanoya, K. On-line assessment of statistical learning by event-related potentials. Journal of Cognitive Neuroscience 20, 952–964 (2008).

The corresponding author for this highlight is based at the RIKEN Laboratory for Biolinguistics

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/582/
http://www.researchsea.com

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>