Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Investigational eye treatment: Corneal collagen crosslinking research study

The Cornea and Laser Eye Institute, with Principal Investigator, Peter S. Hersh M.D., is conducting a research study to study the safety and effectiveness of corneal collagen crosslinking (CXL) using Riboflavin/Dextran and Hypotonic Riboflavin in patients with progressive keratoconus and corneal ectasia.

Keratoconus is a disease of the cornea, the clear front lens of the eye (like the crystal on a watch), that occurs in the overall population at a rate of about one in 2000. It usually begins in the teens and 20's and can worsen over time. It is often discovered when vision cannot be properly corrected with glasses. Keratoconus results in thinning of the corneal tissues.

Consequently, the cornea bulges out of its smooth, clear, dome-like structure, and assumes a more conical and irregular configuration. Because of this change in shape, the cornea loses its ability to form a clear image in the eye and the patient's vision can decrease drastically. Treatments include specialty keratoconus contact lenses and corneal inlays. However, the keratoconus cornea can continue to bulge over time and some keratoconus patients ultimately may require corneal transplantation to regain vision.

Corneal collagen crosslinking (CXL) using ultraviolet light combined with riboflavin (Vitamin B2) is an investigational procedure designed to strengthen the cornea and decrease the progression of keratoconus. CXL is an investigational procedure and is not approved for use in the United States. However, here at the CLEI Center for Keratoconus, we are participating in a research study of CXL. The goal of the study is to assess the safety and efficacy of crosslinking for the treatment of keratoconus as well as corneal ectasia after LASIK. If successful, CXL may decrease progression of keratoconus and maintain the patient's vision over time.

During the crosslinking procedure, anesthesia drops are administered. The surface epithelial cells of the cornea are then removed and riboflavin drops are administered for 30 minutes. The riboflavin acts both to enhance the crosslinking effect and to protect the rest of the eye from the UV exposure.

The patient then looks at a UV emitting light for 30 minutes. At the conclusion of the procedure, a soft contact lens bandage is applied. The contact lens is left in place to improve healing for approximately 5 days and is then removed. Antibiotic and anti-inflammatory drops are used for two weeks afterwards.

Dr. Hersh, a cornea and refractive surgery specialist in Teaneck, NJ, founded the Cornea and Laser Eye Institute in 1995, and its specialty CLEI Center for Keratoconus in 2002. Dr. Hersh is also Clinical Professor of Ophthalmology and Director of Cornea and Refractive Surgery at UMDNJ-New Jersey Medical School, and Visiting Research Collaborator at Princeton University.

For more research study information please call 201-883-0505

Stacey Lazar | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Finding cannabinoids in hair does not prove cannabis consumption
07.10.2015 | Universitätsklinikum Freiburg

nachricht Older patients recover more slowly from concussion
06.10.2015 | Radiological Society of North America

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

Im Focus: High-speed march through a layer of graphene

In cooperation with the Center for Nano-Optics of Georgia State University in Atlanta (USA), scientists of the Laboratory for Attosecond Physics of the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität have made simulations of the processes that happen when a layer of carbon atoms is irradiated with strong laser light.

Electrons hit by strong laser pulses change their location on ultrashort timescales, i.e. within a couple of attoseconds (1 as = 10 to the minus 18 sec). In...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

IP-cores for real-time signal processing in digital communication systems

07.10.2015 | Information Technology

Research initiative presents new traffic technologies for cities

07.10.2015 | Transportation and Logistics

Kick-off for a new era of precision astronomy

07.10.2015 | Physics and Astronomy

More VideoLinks >>>