Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Non-inherited mutations account for many heart defects, Yale researchers find

13.05.2013
New mutations that are absent in parents but appear in their offspring account for at least 10% of severe congenital heart disease, reveals a massive genomics study led, in part, by researchers at the Yale School of Medicine.

The analysis of all the genes of more than 1800 individuals found hundreds of mutations that can cause congenital heart disease, the most common form of birth defect that afflicts nearly 1% of all newborns.

In particular, the study found frequent mutations in genes that modify histones, proteins that package DNA in the nucleus and orchestrate the timing and activation of genes crucial to development of the fetus. The results of the study, part of the Pediatric Cardiac Genomics Consortium funded by the NIH's National Heart, Lung, and Blood Institute (NHLBI), were published online May 12 in the journal Nature.

"These findings provide new insight into the causes of this common congenital disease," said Richard Lifton, Sterling Professor and chair of the Department of Genetics, investigator for the Howard Hughes Medical Institute, and a senior author of the paper. "Most interestingly, the set of genes mutated in congenital heart disease unexpectedly overlapped with genes and pathways mutated in autism. These findings suggest there may be common pathways that underlie a wide range of common congenital diseases."

"This is an important piece of the puzzle that gives us a clearer picture of the causes of congenital heart disease," said Gary H. Gibbons, M.D., director of the NHLBI. "What this international, multi-center collaborative research effort was able to accomplish, in a small amount of time, is truly remarkable. The state-of-the-art sequencing techniques that were used are allowing us to push the envelope and envision a day when we may be able to better treat and eventually prevent congenital heart disease in the early stages of heart formation."

The mutations can occur at the same site, and both increase and decrease the modification histone proteins, said Martina Brueckner, professor of pediatrics and genetics at Yale and another senior author of the study. The results suggest a very sensitive developmental system that might also be influenced by environmental factors in development.

"These findings point to fundamental mechanisms that play a role in a wide range of congenital diseases," Lifton said.

Samir Zaidi and Murim Choi of Yale were co-lead authors of the paper. Researchers from Harvard University, Columbia University Medical Center, the Perelman School of Medicine at University of Pennsylvania, and Icahn School of Medicine at Mt. Sinai shared senior authorship.

Bill Hathaway | EurekAlert!
Further information:
http://www.yale.edu

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>