Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Indoor plants can reduce formaldehyde levels

19.02.2009
Air quality improves when live plants introduced

The toxic gas formaldehyde is contained in building materials including carpeting, curtains, plywood, and adhesives.

As it is emitted from these sources, it deteriorates the air quality, which can lead to "multiple chemical sensitivity" and "sick building syndrome", medical conditions with symptoms such as allergies, asthma, and headaches. The prevalence of formaldehyde and other volatile organic compounds (VOC) is greater in new construction.

Researchers are studying the ability of plants to reduce formaldehyde levels in the air. A study led by Kwang Jin Kim of Korea's National Horticultural Research Institute compared the absorption rate of two types of houseplants. The results of the experiment on Weeping Fig (Ficus benjamina) and Fatsia japonica, an evergreen shrub, were published in the Journal of American Society for Horticultural Science.

During the study, equal amounts of formaldehyde were pumped into containers holding each type of plant in three configurations: whole, roots-only with the leafy portion cut off, and aerial-only, with the below-ground portion sealed off, leaving the stem and leaves exposed.

The results showed the combined total of aerial-only and roots-only portions was similar to the amount removed by whole plants. Complete plants removed approximately 80% of the formaldehyde within 4 hours. Control chambers pumped with the same amount of formaldehyde, but not containing any plant parts, decreased by 7.3% during the day and 6.9% overnight within 5 hours. As the length of exposure increased, the amount of absorption decreased, which appeared to be due to the reduced concentration of the gas.

Aerial parts of reduced more formaldehyde during the day than at night. This suggests the role played by stomata, tiny slits on the surface of the leaves that are only open during the day. The portion of formaldehyde that was reduced during the night was most likely absorbed through a thin film on the plant's surface known as the cuticle. Root zones of ficus removed similar amounts between night and day. However, japonica root zones removed more formaldehyde at night.

Researchers consider microorganisms living among the soil and root system to be a major contributor to the reduction. Japonica were planted in larger pots than the ficus, which may account for the lower night reduction rate of the latter. More knowledge of the contributions of microorganisms is cited by the study to be important in further understanding the air purifying potential of plants.

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org
http://journal.ashspublications.org/cgi/content/abstract/133/4/521

More articles from Health and Medicine:

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

nachricht Camouflage apples
22.03.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>