Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Do Individuals React to Metabolic Stress? - Genetic Variation in Metabolism Identified

28.11.2008
Metabolic diseases – in particular the increasingly prevalent type 2 diabetes – are caused by a complex interaction between genetic disposition and unfavorable lifestyle, above all unbalanced diet and too little physical exercise. Researchers at the Helmholtz Zentrum München have now for the first time been able to show a relationship between the genetic make-up of an individual and differences in his/her metabolism.

The team of Professor Karsten Suhre of the Institute for Bioinformatics and Systems Biology at the Helmholtz Zentrum München and the Ludwig-Maximilians Universität München (LMU) and Dr. Christian Gieger and Thomas Illig of the Institute for Epidemiology in cooperation with the Innsbruck company Biocrates Life Sciences AG determined the blood test results of several hundred metabolites synchronously with more than 100 000 DNA variants (SNPs) of 284 adult test subjects.

Their research was based on blood samples of participants of the population-based KORA study (Kooperative Gesundheitsforschung in der Region Augsburg [Cooperative Health Research in the Region of Augsburg] which is headed by Professor H.-Erich Wichmann).

By combining comprehensive genetic data with metabolite data, the scientists identified genetic variants (SNPs) in several genes that code for enzymes which perform important tasks in the body’s metabolism of lipids, sugars and carbohydrates. Individuals who differ from each other through such gene variants exhibit at the same time very different activity of the affected enzymes, which is apparent in the different metabolite concentrations in the serum. Simply expressed, the individuals in the study had different metabolic patterns (metabotypes) due to genetic factors.

“These are at least partly comparable to the different varieties of hair color which are due to genetic variations,” Karsten Suhre said. Redheads react more sensitively to sunlight than dark-haired individuals do. It may be similar with the genetic variations identified here, which are responsible for the different metabotypes.

While one group is able to react relatively robustly to “metabolic stress“, e.g. in the form of a short-term nutritional deficiency or a high-fat diet, another group may have more or less pronounced physical impairments, the precise extent of which can now be ascertained in follow-up studies. “For example, differences in hair color are apparent to the observer at first glance. However, in the case of metabolism it takes much more effort to identify the role which the respective gene variant plays in the metabolism of the affected person,“ Karsten Suhre explained.

In this study, by means of a genome-wide analysis, the cross-institutional working group succeeded for the first time in profiling a number of such relationships. The identification of such genetically induced variations in the metabolism can be utilized in the future to predict risks with respect to certain medical phenotypes, possible reactions to medical treatment, nutritional or environmental influences – a first step towards personalized medicine and nutrition, based on a combination of a genetic and metabolic characterization of the patients.

Michael van den Heuvel | alfa
Further information:
http://www.helmholtz-muenchen.de
http://www.helmholtz-muenchen.de/en/press/press/press-releases-2008/press-releases-2008-detail/article/11358/44/index.html

More articles from Health and Medicine:

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>